
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-1999-208979
ICASE Report No. 99-3

Priority in Process Algebras

Rance Cleaveland
State University of New York at Stony Brook, Stony Brook, New York

Gerald Lüttgen
ICASE, Hampton, Virginia

V. Natarajan
IBM Corporation, Research Triangle Park, North Carolina

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

January 1999

Prepared for Langley Research Center
under Contract NAS1-97046

PRIORITY IN PROCESS ALGEBRAS�

RANCE CLEAVELANDy, GERALD L�UTTGENz, AND V. NATARAJANx

Abstract. This paper surveys the semantic rami�cations of extending traditional process algebras with

notions of priority that allow for some transitions to be given precedence over others. These enriched

formalisms allow one to model system features such as interrupts, prioritized choice, or real-time behavior.

Approaches to priority in process algebras can be classi�ed according to whether the induced notion of

pre-emption on transitions is global or local and whether priorities are static or dynamic. Early work in the

area concentrated on global pre-emption and static priorities and led to formalisms for modeling interrupts

and aspects of real-time, such as maximal progress, in centralized computing environments. More recent

research has investigated localized notions of pre-emption in which the distribution of systems is taken into

account, as well as dynamic priority approaches, i.e., those where priority values may change as systems

evolve. The latter allows one to model behavioral phenomena such as scheduling algorithms and also enables

the e�cient encoding of real-time semantics.

Technically, this paper studies the di�erent models of priorities by presenting extensions of Milner's

Calculus of Communicating Systems (CCS) with static and dynamic priority as well as with notions of

global and local pre-emption. In each case the operational semantics of CCS is modi�ed appropriately,

behavioral theories based on strong and weak bisimulation are given, and related approaches for di�erent

process-algebraic settings are discussed.

Key words. process algebra, priority, pre-emption, bisimulation

Subject classi�cation. Computer Science

1. Introduction. Traditional process algebras [6, 37, 40, 52] provide a framework for reasoning about

the communication potential of concurrent and distributed systems. Such theories typically consist of a simple

calculus with a well-de�ned operational semantics [1, 63] given as labeled transition systems ; a behavioral

equivalence is then used to relate implementations and speci�cations, which are both given as terms in

the calculus. In order to facilitate compositional reasoning, in which systems are veri�ed on the basis of

the behavior of their components, researchers have devoted great attention to the de�nition of behavioral

congruences, which allow the substitution of \equals for equals" inside larger systems.

Although many case studies (see e.g. [2]) prove the utility of the process-algebraic approach to system

modeling and veri�cation, many systems in practice cannot be modeled accurately within this framework.

�This work was supported by the National Aeronautics and Space Administration under NASA Contract Nos. NAS1-97046

while the �rst and second authors were in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-2199.
yDepartment of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, e-mail:

rance@cs.sunysb.edu. Research supported by NSF grants CCR-9257963, CCR-9402807, CCR-9505662 and INT-9603441 and

AFOSR grant F49620-95-1-0508.
zInstitute for Computer Applications in Science and Engineering (ICASE), Mail Stop 403, NASA Langley Research Center,

Hampton, VA 23681-2199, e-mail: luettgen@icase.edu.
xNetworking Hardware Division, IBM Corporation, Research Triangle Park, NC 27709, e-mail: nataraj@raleigh.ibm.com.

1

One reason is that traditional process algebras focus exclusively on expressing the potential nondeterminism

that the interplay of concurrent processes may exhibit; they do not provide any means for encoding di�ering

levels of urgency among transitions that might be enabled from a given system state. Typical examples of

urgency include:

� interrupts, where non-urgent transitions at a state are pre-empted whenever an interrupt is raised;

� programming language constructs, such as the PRIALT construct in occam [41], that impose an

order on transitions;

� real-time behavior that is semantically founded on the well-known synchrony hypothesis [13] or

maximal progress assumption [74]; and

� scheduling algorithms which also rely on the concept of pre-emption.

In each of these cases urgency provides a means for restricting nondeterminism. This mechanism is simply

ignored in traditional process algebras. As a consequence, the resulting system models are often not faithful

since they contain spurious paths that cannot be traversed by the real-world systems themselves [16, 28].

back

forth

i

ok check
A B

Fig. 1.1. A simple example system

As a simple example of the need for integrating concepts of urgency in process algebra consider the

interrupt-based system depicted in Figure 1.1. It consists of two processes, A that ips back and forth

between two states and B that checks if A is running properly. Whenever B receives a check message it

requests status information from A via interrupt port i which in turn responds by ok. In the absence of an

indication that a communication on i is more urgent than one on back and forth, the process A can ignore

a check request inde�nitely.

1.1. Classi�cation of Approaches to Priority. A number of approaches have been proposed for

taking into account di�erent aspects of priority [4, 12, 16, 20, 21, 22, 23, 25, 27, 28, 31, 33, 35, 42, 43, 44,

48, 49, 50, 58, 59, 65, 68, 69]. One may classify these approaches according to the following two criteria.

Static vs. dynamic priority:

In static approaches, transitions are assigned priority values that do not change as the system

under consideration evolves. These schemes �nd application in the modeling of interrupts

or prioritized choice constructs. In the former case, interrupts have a �xed urgency level

associated with them; in the latter, priorities of transitions are �xed by the static program

syntax. Almost all priority approaches to process algebra published so far deal with static

priorities. The exceptions are [16, 21], which present models that allow priority values

of transitions to change as systems evolve. Such dynamic behavior is useful in modeling

scheduling approaches and real-time semantics.

2

Global vs. local pre-emption:

This criterion refers to the scope of the priority values. In the case of centralized systems,

priorities generally have a global scope in the sense that transitions in one process may

pre-empt transitions in another. We refer to this kind of pre-emption, which has been

advocated by Baeten, Bergstra, and Klop [4] and by Cleaveland and Hennessy [25] in the

late eighties, as global pre-emption. In contrast, in a distributed system containing several

sites, transitions should only be allowed to pre-empt those at the same site. This kind of

pre-emption, which was �rst studied by Camilleri and Winskel [23] in the early nineties, is

called local pre-emption.

Based on this classi�cation scheme the body of this paper investigates the following di�erent semantics for

a prototypical process-algebraic language: static/global, static/local, and dynamic/global. The combination

of dynamic priority and local pre-emption, on which research has not yet been carried out, is omitted.

Some caveats about terminology are in order here. Other process algebra researchers have used the term

\pre-emption" in a setting without priorities [17]; in their usage pre-emption occurs when the execution

of one transition removes the possibility of another. In our priority-oriented framework, we say that pre-

emption occurs when the presence of one transition disables another transition. Berry [12] refers to this latter

notion as must pre-emption and to the former as may pre-emption. In this article, whenever we speak of

\pre-emption" we mean \must pre-emption." It should also be noted that our concept of global pre-emption

and dynamic priority di�ers from the notion of globally dynamic priority found in [68]; as the distinction is

somewhat technical we defer further discussion on this point to later in the article.

1.2. Summary. This paper surveys existing work on priority in process algebras. In order to focus

on some of the technical issues involved with priority and pre-emption, we introduce a simple framework

for their illustration. This framework extends Milner's Calculus of Communicating Systems (CCS) [52] and

its bisimulation-based semantic theory by attaching priority values to actions. Although familiarity with

CCS is not a prerequisite for reading this article, some knowledge of it would be advantageous since not

all standard de�nitions and notations are re-stated here. For our language three di�erent semantics are

given: one reecting static priorities and global pre-emption, one for static priorities and local pre-emption,

and one capturing dynamic priorities and global pre-emption. The common language allows for a detailed

comparison of the semantic concepts; in addition, the classi�cation scheme presented above helps us to cate-

gorize most published approaches to priority. These have been proposed for a variety of well-known process

algebras, such as the already mentioned CCS, the Algebra of Communicating Processes (ACP) [8], Commu-

nicating Sequential Processes (CSP) [40], the Calculus of Broadcasting Systems with Priorities (PCBS) [65],

Synchronous CCS (SCCS) [52], and Asynchronous Communicating Shared Resources (ACSR) [22].

Technically, for the process algebras with static priority to be presented in this paper we develop a

semantic theory based on the notion of bisimulation [52, 61]. Our aim is to carry over the standard algebraic

results from CCS [52], including abstractness theorems as well as axiomatic, logical, and algorithmic char-

acterizations. More precisely, we investigate both strong and weak bisimulations that are based on naive

adaptations of the standard de�nitions as given by Milner; we especially characterize the largest congruences

contained in these relations. These abstractness results indicate that the behavioral relations are semantically

adequate and useful for formally reasoning about concurrent and distributed systems. Moreover, we present

sound and complete axiomatizations for the obtained strong bisimulations with respect to �nite processes,

3

i.e., those which do not contain recursion. These axiomatizations testify to the mathematical tractability of

the semantic theories presented here. We also characterize the attendant notions of prioritized strong and

weak bisimulations as standard bisimulations on alternative transition relations so that well-known partition-

re�nement algorithms [46, 60] for their computation become applicable. This also allows for establishing

logical characterizations of the behavioral relations by adapting Hennessy-Milner logic [19, 52]. In the case

of the dynamic priority semantics, we prove a one-to-one correspondence with traditional real-time semantics

in terms of strong bisimulation. Because of this close relationship semantic theories developed for real-time

process algebras can be carried over to the dynamic priority setting.

1.3. Organization. The remainder of this paper is organized as follows. The next section introduces

our language, de�nes some formal notations used throughout the paper, and discusses some basic design

decisions we have taken. Section 3 presents a semantics of the language based on static priority and global

pre-emption; Section 4 then develops a semantics based on static priority and local pre-emption. A dynamic

priority approach is illustrated in Section 5. Related work is referred to in each of the last three sections, while

Section 6 surveys several priority approaches adopted for di�erent process-algebraic frameworks. Section 7

contains our conclusions and suggestions for future work. The �nal section points to the most relevant

sources of the research compiled in this article.

2. Basic Language and Notation. As mentioned above, the language considered here is an extension

of Milner's CCS [52], a process algebra characterized by handshake communication and interleaving semantics

for parallel composition. Syntactically, CCS includes notations for visible actions, which are either sends or

receives on ports, and a distinguished invisible, or internal action. The semantics of CCS is then given via

a transition relation that labels execution steps with actions. When a sender and receiver synchronize, the

resulting action is internal. Consequently, transitions labeled by visible actions can be seen as representing

only \potential" computation steps, since in order for them to occur they require a contribution from the

environment. Transitions labeled by internal actions describe complete synchronizations and therefore should

be viewed as \real" computation steps.

In order to capture priorities, the syntax of our language di�ers from CCS in that the port set exhibits a

priority scheme, i.e., priorities are attached to ports. Our notion of pre-emption then stipulates that a system

cannot engage in transitions labeled by actions with a given priority whenever it is able to perform a transition

labeled by an internal action of a higher priority. In this case we say that the lower-priority transition is

pre-empted by the higher-priority internal transition. In accordance with the above discussion visible actions

never have pre-emptive power over actions of lower priority because visible actions only indicate the potential

for execution. An algebraic justi�cation of this design decision can be found in Section 3.5.

Technically, priority values are taken from some �nite domain equipped with a strict order. For the sake

of simplicity we use �nite initial intervalsN of the natural numbers in what follows. We adopt the convention

that smaller numbers mean higher priorities; so 0 is the highest priority. Intuitively, visible actions represent

potential communications that a process may be willing to engage in with its environment. Formally, let

f�k j k 2 Ng denote an N -indexed family of countably in�nite, disjoint sets of ports. Intuitively, �k contains

the ports with priority k that processes may synchronize over. Then the set of actions Ak with priority k

may be de�ned by Ak =df �k [�k [f�kg, where �k =df f� j� 2 �kg and �k =2 �k. An action � :k 2 �k

may be thought of as representing the receipt of an input on port � that has priority k, while � :k 2 �k

constitutes the deposit of an output on �. The invisible actions �k represent internal computation steps with

4

priority k. For better readability we write � :k if � 2 �k and � :k for �k. The set of all ports � and the

set of all actions A are de�ned by
S
f�k j k 2 Ng and

S
fAk j k 2 Ng, respectively. In what follows, we use

� :k; � :k; : : : to range over A and a :k; b :k; : : : to range over � [�. We also extend � to all visible actions

a :k by a :k =df a :k. Finally, if L � Anf� :k j k 2 Ng then L = fa :k j a :k 2 Lg. The syntax of our language

is de�ned by the following BNF.

P ::= 0 j x j � :k:P j P + P j P jP j P [f] j P n L j �x:P :

Here f is a �nite relabeling, i.e., a mapping on A which satis�es f(� :k) = � :k for all k 2 N , f(a :k) = f(a :k)

for all a :k 2 A n f� :k j k 2 Ng and j f� :k j f(� :k) 6= � :kg j <1. Moreover, a relabeling preserves priority

values, i.e., for all a :k 2 A n f� :k j k 2 Ng we have f(a :k) = b :k for some b :k 2 Ak n f�kg. Furthermore,

the restriction set L is a subset of A n f� :k j k 2 Ng, and x is a variable taken from a set V. Sometimes

it is convenient to write C
def
= P for �C:P where the identi�er C is interpreted as variable. We adopt the

standard de�nitions for sort of a process, free and bound variables, open and closed terms, guarded recursion,

and contexts [52]. We refer to closed and guarded terms as processes and use P;Q;R; : : : to range over the

set P of processes. Finally, we denote syntactic equality by �.

Although our framework allows for multi-level priority schemes we often restrict ourselves to a two-level

priority framework, i.e. we choose N = f0; 1g. The reason is that even in this simple setting most central

semantic and technical issues regarding the introduction of priority to process algebra can be illustrated.

However, we also discuss how the obtained results can be carried over to multi-level priority-schemes. In

order to improve readability within the two-level priority-scheme we often write � for the \prioritized"

action � :0, � for the \unprioritized" action � :1, A for A0, and A for A1. Moreover, we let � and

represent elements taken from A [A. Finally, we want to emphasize again that � and � are considered

to be di�erent ports; i.e., the priority value is part of a port and not of an action. Thus, in a CCS-based

framework only complementary actions having the same priority value can engage in a communication.

We discuss the consequences of lifting this restriction in Section 3.7 for frameworks involving global pre-

emption and in Section 4.6 for those involving local pre-emption. It should be remarked that the dynamic

priority approach presented in Section 5 also di�ers in its interpretation of ports, actions, and priority values.

Finally, our language does not provide any means for changing priority values of actions. However, we will

discuss in Section 3.5 the e�ect of introducing additional operators to our language, called prioritization and

deprioritization, which respectively increase and decrease priority values.

3. Static Priority and Global Pre-emption. In this section we introduce a semantics of our lan-

guage, restricted to a two-level priority-scheme, based on static priority and global pre-emption. We refer to

this language as CCSsg (CCS with static priority and global pre-emption) and develop its semantic theory

along the lines mentioned in Section 1.2. The organization of this section is as follows. Section 3.1 formally

introduces the operational semantics for CCSsg. The following two sections show how to adapt the notions

of strong bisimulation and observational congruence to CCSsg, respectively. Section 3.4 applies the semantic

theory to our introductory back-and-forth example. The consequences of adding prioritization and deprior-

itization operators to CCSsg are discussed in Section 3.5. Finally, Section 3.6 comments on the extension of

CCSsg to multi-level priority-schemes whereas Section 3.7 presents our concluding remarks and related work.

3.1. Operational Semantics. The semantics of a process P 2 P is given by a labeled transition

system hP;A;�!; P i, where P is the set of states, A is the alphabet, �!� P � A � P is the transition

relation formally de�ned to be the least relation satisfying the operational rules in Plotkin-style notation [63]

5

presented in Table 3.2, and P is the start state. We write P

�! P 0 instead of hP; ; P 0i 2�! and say

that P may engage in action and thereafter behave like process P 0. Moreover, we let P

�! stand for

9P 0 2 P: P

�! P 0. The presentation of the operational rules requires prioritized initial action sets I(P)

which are de�ned as the smallest sets satisfying the equations in Table 3.1. Intuitively, I(P) denotes the set

of all prioritized actions in which P can initially engage. For convenience we also write II(P) for I(P) n f�g.

Table 3.1

Prioritized initial action sets for CCSsg

I(�:P) = f�g I(�x:P) = I(P [�x:P=x])

I(P +Q) = I(P) [I(Q) I(P jQ) = I(P) [I(Q) [f� j I(P) \ I(Q) 6= ;g

I(P [f]) = ff(�) j� 2 I(P)g I(P nL) = I(P) n (L [L)

Table 3.2

Operational semantics for CCSsg

Act
��

�:P
�
�! P

Act
��

�:P
�
�! P

Sum1
P

�
�! P 0

P +Q
�
�! P 0

Sum1
P

�
�! P 0

P +Q
�
�! P 0

� =2 I(Q)

Sum2
Q

�
�! Q0

P +Q
�
�! Q0

Sum2
Q

�
�! Q0

P +Q
�
�! Q0

� =2 I(P)

Com1
P

�
�! P 0

P jQ
�
�! P 0 jQ

Com1
P

�
�! P 0

P jQ
�
�! P 0 jQ

� =2 I(P jQ)

Com2
Q

�
�! Q0

P jQ
�
�! P jQ0

Com2
Q

�
�! Q0

P jQ
�
�! P jQ0

� =2 I(P jQ)

Com3
P

a
�! P 0 Q

a
�! Q0

P jQ
�
�! P 0 jQ0

Com3
P

a
�! P 0 Q

a
�! Q0

P jQ
�
�! P 0 jQ0

� =2 I(P jQ)

Rel
P

�
�! P 0

P [f]
f(�)
�! P 0[f]

Rel
P

�
�! P 0

P [f]
f(�)
�! P 0[f]

Res
P

�
�! P 0

P n L
�
�! P 0 n L

� =2 L [L Res
P

�
�! P 0

P n L
�
�! P 0 n L

� =2 L [L

Rec
P [�x:P=x]

�
�! P 0

�x:P
�
�! P 0

Rec
P [�x:P=x]

�
�! P 0

�x:P
�
�! P 0

6

The rules in Table 3.2 capture the following operational behavior. The process :P may engage in

action and then behave like P . The summation operator + denotes nondeterministic choice. The process

P +Q may behave like process P (Q) if Q (P) does not pre-empt an unprioritized transition by performing

a prioritized internal transition. The restriction operator nL prohibits the execution of transitions labeled

by actions in L [L and, thus, permits the scoping of actions. P [f] behaves exactly as process P with

the actions renamed with respect to f . The process P jQ stands for the parallel composition of P and Q

according to an interleaving semantics with synchronized communication on complementary actions on the

same priority value resulting in the internal action � or � . However, if Q (P) is capable of engaging in a

prioritized internal transition, then unprioritized transitions of P (Q) are pre-empted. Finally, �x:P denotes

a recursively de�ned process that is a distinguished solution to the equation x = P .

3.2. Semantic Theory Based on Strong Bisimulation. The semantic theory for CCSsg is based

on the notion of bisimulation [52, 61]. First, strong bisimulation [52] is adapted from CCS to our setting as

follows; we refer to this relation as prioritized strong bisimulation.

Definition 3.1 (Prioritized Strong Bisimulation). A symmetric relation R � P �P is called a priori-

tized strong bisimulation if for every hP;Qi 2 R and 2 A the following condition holds.

P

�! P 0 implies 9Q0: Q

�! Q0 and hP 0; Q0i 2 R :

We write P ' Q if hP;Qi 2 R for some prioritized strong bisimulation R.

It is easy to see that ' is an equivalence and that it is the largest prioritized strong bisimulation. The

following result, which enables compositional reasoning, can be proved straightforwardly using standard

techniques [1, 25, 72].

Theorem 3.2. ' is a congruence.

An axiomatization of ' for �nite processes, i.e., guarded and closed CCSsg terms not containing recursion,

can be developed closely along the lines of [25]. We write ` t = u if process term t can be rewritten to

u using the axioms in Table 3.3, which correspond to the axioms presented in [52] except that Axiom (P)

dealing with global pre-emption has been added. In Expansion Axiom (E) the symbol
P

stands for the

indexed version of + , where the empty sum denotes the inaction process 0. The next theorem states that

our equations characterize prioritized strong bisimulation for �nite CCSsg processes. Its proof can be found

in [25]; it uses the technique described in [52].

Theorem 3.3. Let t and u be �nite processes. Then t ' u if and only if ` t = u.

3.3. Semantic Theory Based on Weak Bisimulation. The behavioral congruence developed in the

previous section is too strong for verifying systems in practice, as it requires that two equivalent terms match

each other's transitions exactly, even those labeled by internal actions. In process algebra one remedies this

problem by developing a semantic congruence that abstracts away from internal transitions. We start o�

with the de�nition of a naive prioritized weak bisimulation which is an adaptation of Milner's observational

equivalence [52].

Definition 3.4 (Naive Prioritized Weak Transition Relation).

1. �̂ =df �̂ =df �, â =df a, and â =df a

2.
�

=)�=df (
�
�! [

�
�!)�

3.

=)�=df
�

=)� �

�! �

�
=)�

7

Table 3.3

Axiomatization of '

(A1) t+ u = u+ t (A2) t+ (u+ v) = (t+ u) + v

(A3) t+ t = t (A4) t+ 0 = t

(E) Let t =
P

i i:ti and u =
P

j �j :uj : Then

t ju =
P

i i:(ti ju) +
P

j �j :(t juj)+P
i��j

f� :(ti juj) j i 2 Ag) +
P

i��j
f�:(ti juj) j i 2 Ag)

(Res1) 0 n L = 0 (Rel1) 0[f] = 0

(Res2) (:t) n L = 0 (2 L [L) (Rel2) (:t)[f] = f():(t[f])

(Res3) (:t) n L = :(t n L) (=2 L [L) (Rel3) (t+ u)[f] = t[f] + u[f]

(Res4) (t+ u) n L = (t n L) + (u n L) (P) � :t+ �:u = � :t

Observe that this transition relation abstracts from priority levels for
�

=)�. This is in accordance with the

fact that a priority value is part of an action and, thus, is unobservable for internal actions.

Definition 3.5 (Naive Prioritized Weak Bisimulation). A symmetric relation R � P � P is a naive

prioritized weak bisimulation if for every hP;Qi 2 R, and 2 A the following condition holds.

P

�! P 0 implies 9Q0: Q

̂
=)� Q0 and hP 0; Q0i 2 R :

We write P ��Q if there exists some naive prioritized weak bisimulation R such that hP;Qi 2 R.

Naive prioritized weak bisimulation can be shown to be an equivalence. Unfortunately, �� is not a congruence

for CCSsg with respect to parallel composition, summation, and recursion. Whereas the compositionality

defect for summation and recursion is similar to the one for CCS [52], the defect with respect to parallel

composition is due to pre-emption. As an example consider the processes P
def
= a:0 + b:0 and Q

def
= a:0 +

�:(a:0+ b:0). It is easy to see that P ��Q. However, when composing these processes in parallel with the

process b:0 then Q j b:0
a
�! 0 j b:0 whereas P j b:0 6

a
=)�, i.e., P j b:0 6��Q j b:0. This example shows that

one has to be more careful when de�ning the prioritized weak transition relation since transitions labeled

by visible actions may turn to internal transitions when composed with an environment and, thereby, may

gain pre-emptive power. Consequently, a more adequate notion of weak transitions must take the potential

of processes engaging in visible prioritized transitions into account.

3.3.1. Prioritized Weak Bisimulation. Despite its lack of compositionality, the above de�nition of

�� reects an intuitive approach to abstracting from internal computation. For handling the congruence

problem it is important to consider the following fact from universal algebra.

Proposition 3.6. Let R be an equivalence over an algebra <. The largest congruence R+ in R exists

and R+ = fhP;Qi j 8<-contexts C[X]: hC[P]; C[Q]i 2 Rg, where an <-context C[X] is a term in < with one

free occurrence of the variable X.

Thus, we know that �� contains a largest congruence �+
� for CCSsg and devote the rest of this section to

characterizing �+
�. We �rst de�ne a new weak transition relation which takes pre-emption into account.

8

Definition 3.7 (Prioritized Weak Transition Relation). Let L � A n f�g.

(i) �̂ =df �, �̂ =df �, â =df a, and â =df a (iv)
�

=)
L

=df (
�
�! [

�
�!
L
)�

(ii) P
�
�!
L
P 0 if P

�
�! P 0 and II(P) � L (v)

�
=)=df

�
=) �

�
�! �

�
=)

(iii)
�

=)=df (
�
�!)� (vi)

�
=)
L

=df

�
=)
L
�

�
�!
L
�

�
=)

Intuitively, we have made the transition relation sensitive to pre-emption by introducing conditions involving

prioritized initial action sets and by preserving priority levels of internal actions. In the remainder, we show

that prioritized initial action sets are an adequate means for measuring pre-emption potentials. In this light,

P
�
�!
L
P 0 states that P can evolve to P 0 by performing the unprioritized action � if the environment does not

o�er any prioritized communication on some port in L.

Definition 3.8 (Prioritized Weak Bisimulation). A symmetric relation R � P � P is a prioritized

weak bisimulation if for every hP;Qi 2 R, � 2 A, and � 2 A the following conditions hold.

1. � =2 I(P) implies 9Q0: Q
�

=)
L
Q0; II(Q0) � L where L = II(P); � =2 I(Q0), and hP;Q0i 2 R.

2. P
�
�! P 0 implies 9Q0: Q

�̂
=) Q0, and hP;Q0i 2 R.

3. P
�
�! P 0 implies 9Q0: Q

�̂
=)
L
Q0; where L = II(P); and hP 0; Q0i 2 R.

We write P �Q if hP;Qi 2 R for some prioritized weak bisimulation R.

This new version of weak bisimulation is algebraically more robust than the naive one; in fact, Condition (1)

of De�nition 3.8 is necessary for achieving compositionality with respect to parallel composition.

Proposition 3.9. The equivalence � is a congruence with respect to pre�xing, parallel composition,

relabeling, and restriction. Moreover, � is characterized as the largest congruence contained in ��, in the

sub-algebra of CCSsg induced by these operators and recursion.

Although � is itself not a congruence, this relation provides the basis for obtaining a congruence as is made

precise in the next section.

3.3.2. Prioritized Observational Congruence. The compositionality defect of � with respect to

summation is handled in the following notion of prioritized observational congruence. Unfortunately, the

summation �x presented in [52], which requires an initial internal transition to be matched by a nontrivial

internal weak transition, is not su�cient in order to achieve a congruence based on prioritized weak bisim-

ulation. To see why, let D
def
= � :E and E

def
= �:D. Now de�ne P

def
= �:D and Q

def
= � :E. By De�nition 3.8 we

may observe P �Q, but P + a:0 6� Q+ a:0 since the former can perform an a-transition whereas the latter

cannot. It turns out that we have to require that observationally congruent processes must possess the same

prioritized initial action sets; a requirement which is stronger than the property stated in Condition (1) of

De�nition 3.8.

Definition 3.10. De�ne P �lQ if for all � 2 A and � 2 A the following conditions and their symmetric

counterparts hold.

1. I(P) � I(Q)

2. P
�
�! P 0 implies 9Q0Q

�
=) Q0 and P 0�Q0.

3. P
�
�! P 0 implies 9Q0: Q

�
=)
L
Q0; where L = II(P); and P 0�Q0.

The following theorem states the desired algebraic result for �l.

Theorem 3.11. �l is the largest congruence contained in ��, i.e., �l = �+
�.

9

Whereas the proof of the congruence property of �l is standard (cf., [52]), the \largest" part is proved by

using the following fact from universal algebra.

Proposition 3.12. Let R1 and R2 be equivalences over an algebra < such that R+
1 � R2 � R1. Then

R+
1 = R+

2 .

For the purposes of this section one chooses R1 = �� and R2 = �. The next theorem establishes R+
2 = �l

and can be proved as a corresponding one in [52]; for details see [50].

Theorem 3.13. �l is the largest congruence contained in �.

In order to apply Proposition 3.12, the relation �+
� � � � �� needs to be shown. The inclusion � � ��

follows immediately from the de�nition of the naive prioritized weak and the prioritized weak transition

relation. Thus one is left with �+
� � �. This inclusion turns out to be di�cult to prove directly. Therefore,

the auxiliary relation �a =df fhP;Qi jCPQ[P]�� CPQ[Q]g is de�ned which lies in between �+
� and �. Here,

writing S for the (�nite) union of the prioritized sorts of P and Q, let CPQ[X]
def
= X jHPQ and

HPQ
def
= c:0+

X

L�S; b2S

� :

0
B@

dL;b:HPQ+

DL + e:HPQ+

b:HPQ

1
CA :

Moreover, DL is de�ned as
P

�2L �:0, and the actions c; dL;b; e for all L � S and b 2 S, and their comple-

ments, are supposed to be \fresh" actions, i.e., not in S [S. By Proposition 3.6 we may conclude �+
� � �a.

The other necessary inclusion �a � � is established by showing that �a is a prioritized weak bisimulation;

the proof details can be found in [50]. Summarizing, Theorem 3.11 is a consequence of Proposition 3.12, as

is illustrated by Figure 3.1, where an arrow from relation R1 to relation R2 means that R1 � R2.

��

�

�a

�l�+
�

6

�
���

�
���

6

-�

Fig. 3.1. Situation in the proof of Theorem 3.11

3.3.3. Operational Characterization. The aim of this section is to show how prioritized weak bisim-

ulation can be e�ciently computed by adapting standard partition-re�nement algorithms [46, 60] developed

for strong bisimulation [52]. To this end, we provide an operational characterization of prioritized weak

bisimulation as strong bisimulation by introducing an alternative prioritized weak transition relation.

Definition 3.14. For P; P 0 2 P, � 2 A, and � 2 A de�ne

1.
�̂
=)�=df

�̂
=) and

2. P
�̂
=)� P

0 if 9P 00 2 P : � =2 I(P 00) and P
�

=) P 00 �̂
=)
L
P 0 for L = II(P 00).

10

Observe that the alternative prioritized weak transition relation is not parameterized by prioritized initial

action sets. Its computation can be done e�ciently using dynamic programming techniques.

Definition 3.15. A symmetric relation R � P�P is called an alternative prioritized weak bisimulation

if for all hP;Qi 2 R and 2 A [A the following condition holds.

P
̂

=)� P
0 implies 9Q0: Q

̂
=)� Q

0 and hP 0; Q0i 2 R :

We write P ��Q if hP;Qi 2 R for some alternative prioritized weak bisimulation R.

Theorem 3.16 (Operational Characterization). � = ��.

The proof is omitted since this characterization result can be established straightforwardly [50]. However,

it should be mentioned that the above characterization can also be used as a basis for de�ning a Hennessy-

Milner logic along the lines of [52] (see also [50]).

3.4. Example. As a simple example, we take a look at the back-and-forth system introduced in Sec-

tion 1 which can be formalized in CCSsg as follows: Sys
def
=(A jB) n fig where A

def
= back:A0 + i:�:ok:i:A,

A0
def
= forth:A+ i:�:ok:i:A0, and B

def
= check:i:i:B. Intuitively, i is an internal interrupt, and thus prioritized

and restricted (via nfig), which is invoked whenever check is executed. Hence, in such a state the process A

cannot engage in a transition labeled by back or forth according to our pre-emptive operational semantics,

but must accept the communication on the prioritized port i. One can think of the � -action in the de�nition

of process A as representing some internal activities determining the current status of the system. The CCSsg

semantics of Sys is shown in Figure 3.2.

ττ

ττ

τ τ

back

forth

ok ok

checkcheck

Fig. 3.2. Semantics of Sys

In the sequel, we prove that Sys meets its intuitive speci�cation Spec, which is given by

Spec
def
= back:Spec0 + check:ok:Spec

Spec0
def
= forth:Spec+ check:ok:Spec0 :

First, the validity of Sys�Spec is proved by the relation presented in Table 3.4 whose symmetric closure is

a prioritized weak bisimulation that contains hSys; Speci.

In addition, both processes only possess visible initial actions, and their prioritized initial action sets are

identical. Hence, we may conclude Sys�l Spec. Contrast this with pure CCS where we could not deal with

interrupt behavior, and we have achieved our goal.

3.5. Prioritization and Deprioritization Operators. There are several other language constructs

worth considering when dealing with priority. Of particular interest are the unary operators introduced

11

Table 3.4

A relation whose symmetric closure is a prioritized weak bisimulation

f h Sys ; Spec i ; h (A0 jB) n fig ; Spec0 i ;

h (A j i:i:B) n fig ; ok:Spec i ; h (�:ok:i:A j i:B) n fig ; ok:Spec i ;

h (ok:i:A j i:B) n fig ; ok:Spec i ; h (i:A j i:B) n fig ; Spec i ;

h (A0 j i:i:B) n fig ; ok:Spec0 i ; h (�:ok:i:A0 j i:B) n fig ; ok:Spec i ;

h (ok:i:A0 j i:B) n fig ; ok:Spec0 i ; h (i:A0 j i:B) n fig ; Spec0 i g

by Cleaveland and Hennessy in [25] which correspond to the prioritization of a visible unprioritized action,

written da for a 6� � , and to the deprioritization of a visible prioritized action, written ba for a 6� � . The

operational semantics of these operators is formally de�ned in Table 3.5. This introduction requires that

(i) every prioritized port a corresponds one-to-one to an unprioritized port a, (ii) every relabeling f satis�es

f(a) � f(a), and (iii) every restriction set L obeys the property \a 2 L if and only if a 2 L." Intuitively,

P da prioritizes all a actions which P can perform, while P ba deprioritizes all a actions in which P can

engage, provided the newly deprioritized action is also available to P . Note that the notion of priority is still

static and not dynamic since the prioritization and deprioritization operators are static operators. Thus, the

change of priority values a�ects a process in its whole and is not limited to its initial behavior.

Table 3.5

Semantics for the prioritization and the deprioritization operator

Prio1
P

a
�! P 0

P da
a
�! P 0da

� =2 I(P) Prio2
P

a
�! P 0

P da
a
�! P 0da

� 2 I(P) Prio3
P

�! P 0

P da

�! P 0da

 6� a

Deprio1
P

a
�! P 0

P ba
a
�! P 0ba

� =2 I(P) Deprio2
P

a
�! P 0

P ba
a
�! P 0ba

� 2 I(P) Deprio3
P

�! P 0

P ba

�! P 0ba

 6� a

Including prioritization and deprioritization operators with CCSsg does not conict with the notion of

prioritized strong bisimulation; especially since it is compositional with respect to these operators [25]. The

axiomatization of prioritized strong bisimulation for �nite processes can also be extended to cover the new

operators. The necessary additional axioms are presented in Table 3.6. Moreover, the presence of the

prioritization and the deprioritization operator allows us to formally justify the design decision that only

prioritized internal actions have pre-emptive power over unprioritized actions. For this purpose assume that

(i) pre-emption is not encoded in the side conditions of the operational rules but, equivalently, in the notion

of bisimulation [25] and that (iii) the naive view of pre-emption gives all prioritized actions pre-emptive

power. Thus, a naive bisimulation �n demands the following condition for equivalent processes P �nQ and

unprioritized actions � 2 A: (P
�
�! P 0 ^ 6 9�: P

�
�!) implies (9Q0: Q

�
�! Q0 ^ 6 9�:Q

�
�! ^P 0�nQ

0), and

vice versa. The condition for prioritized actions can be adopted from standard strong bisimulation. It turns

out that �n is not a congruence; e.g., a:0 + b:0�n b:0 but (a:0 + b:0) n fbg 6�n (b:0) n fbg since the former

process can engage in an a-transition while the latter is deadlocked. Thus, the question arises how the largest

12

Table 3.6

Axioms for the prioritization and the deprioritization operator

(Prio1) 0da = 0

(Prio2) (a:t)da = a:(tda)

(Prio3) (:t)da = :(tda) 6� a

(Prio4) (t+ � :u+ b:v)da = (t+ � :u)da+ b:(vda)

(Prio5) (t+ �:u+ :v)da = (t+ �:u)da+ (t+ :v)da �; 2 A n f�g

(Deprio1) 0ba = 0

(Deprio2) (a:t)ba = a:(tba)

(Deprio3) (:t)ba = :(tda) 6� a

(Deprio4) (t+ � :u+ b:v)ba = (t+ � :u)ba+ b:(vba)

(Deprio5) (t+ �:u+ :v)ba = (t+ �:u)ba+ (t+ :v)ba �; 2 A n f�g

congruence �+
n contained in �n can be characterized; it turns out that �+

n coincides with prioritized strong

congruence as de�ned above (see [25] for a formal treatment). This shows that in the presence of pre-emption

only prioritized internal actions may pre-empt unprioritized actions. However, this algebraic result is only

correct if we include the deprioritization operator in our language. A non-trivial characterization of �+
n with

respect to our original language is still an open problem.

For the language extended by the prioritization and the deprioritization operator, an observational

congruence together with an axiomatic characterization with respect to �nite processes has been developed

in [58, 59], which is briey reviewed here. For this purpose, we need to re�ne the prioritized weak transition

relation. First, we re-de�ne
a

=) to
a

=)=df
�

=) �
a
�! �

�
=), i.e., a weak unprioritized a-transition consists

of an a-transition that is preceded and trailed by prioritized internal transitions only. Moreover, we replace

II(P) by II(P)[II(P) in the de�nition of
�

=) since one has to take into account that unprioritized actions

may turn to prioritized ones if they are in the scope of the prioritization operator. Finally, we write P
�

=)
L
P 0

whenever P
�

=)
L
P 0 and P 6� P 0. Consequently, visible weak unprioritized transitions only abstract from

prioritized internal actions. The reason for this restriction is that, otherwise, prioritized weak bisimulation

would not be compositional with respect to the prioritization and the deprioritization operator. In contrast,

the original prioritized weak transition relation allows an �-transition to be preceded by any sequence of � -

and � -transitions (satisfying a condition on initial action sets) and only to be trailed by � -transitions.

The notions of prioritized weak bisimulation and prioritized observational congruence are de�ned in [58,

59] as follows, where P + stands for 9P 0: P
�

=) P 0 and P 0 6
�
�!.

Definition 3.17. A symmetric relation R � P � P is a modi�ed prioritized weak bisimulation if for

all hP;Qi 2 R and 2 A n f�g the following conditions hold.

1. P + implies Q +.

2. P

�! P 0 implies 9Q0: Q

̂
=) Q0, and hP;Q0i 2 R.

3. P
�
�! P 0 implies 9Q0: Q

�
=)
L
Q0; L = II(P) [II(P); and hP 0; Q0i 2 R.

We write P �pdQ if there exists a modi�ed prioritized weak bisimulation R such that hP;Qi 2 R.

13

Table 3.7

Axioms for the � -laws

(�1) :(1:t+ t) = :t 1 2 f�; �g

(�2) � :t = � :t+ t

(�3) :(t+ � :u) = :(t+ � :u) + :u

(�1) t+ �:(u+ �:v) = t+ �:(u+ �:v) + �:v `I tvi v

Table 3.8

Axiomatization of vi (Axioms I)

(iC1) �:tvi �:u (iC2) 0vi :t 2 A n f�g (iC3) �:tvi 0

Definition 3.18. We de�ne P �l
pdQ if for all 2 Anf�g the following conditions and their symmetric

counterparts hold.

1. P

�! P 0 implies 9Q0Q

=) Q0 and P 0�pdQ

0.

2. P
�
�! P 0 implies 9Q0: Q

�
=)
L
Q0; where L = II(P) [II(P); and P 0�pdQ

0.

The observational congruence �l
pd possesses nice algebraic properties for our language extended by the

prioritization and the deprioritization operator, including a largest congruence result similar to Theorem 3.11

and a sound and complete axiomatization with respect to �nite processes. For the latter, the axiomatization

for prioritized strong bisimulation is augmented with suitable � -laws as shown in Table 3.7 (cf. [52]). The

relation vi, occurring in the side condition of Axiom (�1), is the pre-congruence on �nite processes generated

from the axioms presented in Table 3.8 using the laws of inequational reasoning; we write `I tvi u if t can

be related to u by Axioms (iC1), (iC2), and (iC3). Intuitively, `I tvi u holds, whenever (i) � 2 I(t) if and

only if � 2 I(u) and (ii) II(t) � II(u).

Finally, it should be noted that applications underline the importance of the additional freedom of ab-

stracting from internal transitions gained by leaving out the prioritization and the deprioritization operator.

In fact, the observational congruence �l
pd does not relate the processes Sys and Spec of our back-and-forth

example. This is due to the presence of the unprioritized internal action in Sys.

3.6. Extension to Multi-level Priority Schemes. We now remark on the extension of CCSsg to a

multi-level priority-scheme. To do so, we �rst alter the de�nition of prioritized initial action sets to capture

the priority-level of actions; i.e., we de�ne sets Ik(P) for processes P with respect to priority value k. This

can be done as shown in Table 3.9.

Using this de�nition of initial action sets and the convention � =2 I<k(P) if 6 9l < k: � : l 2 Il(P) the

operational semantics can be re-stated as follows, as exemplary shown for Rule (Com3).

Com3
P

a:k
�! P 0 Q

a:k
�! Q0

P jQ
� :k
�! P 0 jQ0

� =2 I<k(P jQ)

Observe that the sets Ik(P) may contain actions in which P cannot initially engage, since their de�nition does

14

Table 3.9

Potential initial action sets for CCSsg

Ik(� : l:P) = f� : l j l = kg Ik(P [f]) = ff(� : l) j� : l 2 Ik(P)g

Ik(�x:P) = Ik(P [�x:P=x]) Ik(P+Q) = Ik(P) [Ik(Q)

Ik(P n L) = Ik(P)n(L [L) Ik(P jQ) = Ik(P) [Ik(Q) [f� :k j Ik(P) \ Ik(Q) 6= ;g

not consider pre-emption. In fact, the set of actions with priority value k in which P can indeed initially

engage is given by Ik(P) = f� :k 2 Ik(P) j � : l =2 Il(P) for all l < kg. However, it is easy to show that

� =2 I<k(P) if and only if � =2 I<k(P) [50]. Thus, the side condition of Rule (Com3) captures our intuition

that P jQ cannot engage in a more urgent internal transition.

Table 3.10

Prioritized weak transition relation

�:0
=) =df (

� :0
�!)� P

�:k
�!
L
P 0 if P

�:k
�! P 0 and II l(P) � L for all l < k

�:k
=)
L

=df (f
� :l
�!
L
j l � kg)�

�:k
=)
L

=df
�:k
=)
L
�

�:k
�!
L
�

�:0
=)

The re-development of the bisimulation-based semantic theory proceeds along the lines of the above

sections and does not raise any new semantic issues. For example, the notion of prioritized observational

congruence is de�ned as follows [50], where (i) the prioritized weak transition relation is given by the rules

in Table 3.10, (ii) IIk(P) =df Ik(P) n f� :kg, (iii) �ml is the adaption of prioritized weak bisimulation to a

multi-level priority-scheme, (iv) I(P) =df

S
fIk(P) j k 2 Ng, and (v) II<k(P) =df I<k(P) n f� : l j l < kg.

Definition 3.19. Processes P and Q are prioritized observational congruent if for all actions � :k the

following conditions and their symmetric counterparts hold.

1. I(P) � I(Q)

2. P
�:k
�! P 0 implies 9Q0: Q

�:k
=)
L
Q0; where L = II<k(P); and P 0�mlQ

0

Details of the extension of CCSsg to a multi-level priority-scheme can be found in [50].

3.7. Concluding Remarks and Related Work. We conclude by �rst commenting on the design

decision that priority values are considered to be part of ports, which implies that only complementary

actions having the same priority can synchronize. Lifting this design decision by allowing a :k and a : l,

where k 6= l, to synchronize leads to the question of which priority value to assign to the resulting � . One

can imagine several obvious choices for this function, e.g., maximum or minimum. In addition, [33, 35]

recommend using the sum of the priority values of the actions involved. Unfortunately, while a speci�c

function may be suitable for certain examples, it is di�cult to motivate for general applications. In the next

section, we will see that such a function is superuous when dealing with local pre-emption.

Regarding related work, Gerber and Lee have developed a real-time process algebra, the Calculus of

Communicating Shared Resources (CCSR) [32], that explicitly takes into account the availability of system

resources. Semantically, synchronizations between processes are modeled in an interleaving fashion using

15

instantaneous transitions, whereas the access of resources is truly concurrent and consumes time. In CCSR

a priority structure may be de�ned over resources in order to indicate their importance; e.g., it can be used

to ensure that deadlines are met. The underlying concept of priority is similar to that of CCSsg in that

priorities are static and pre-emption is global. In [33] a resource-based prioritized (strong) bisimulation for

CCSR together with a congruence result and axiomatizations with respect to several classes of processes [20]

are given.

Prasad has also extended his Calculus of Broadcasting Systems (CBS) [64] for dealing with a notion

of static priority [65]. He refers to the priority calculus as PCBS. For PCBS nice semantic theories based

on Milner's strong and weak bisimulation have been developed along with congruence proofs. Remarkably,

these theories do not su�er from the technical subtleties which have been encountered for CCSsg, although

the concept of pre-emption is basically the same. The reason is that PCBS uses a much simpler model

for communication that is based on the principle of broadcasting. In this setting, priority values are only

attached to output actions, which cannot be restricted or hidden as in traditional process algebras. Finally,

it should be mentioned that PCBS contains an operator, called translate, which allows for the prioritization

and the deprioritization of actions.

4. Static Priority and Local Pre-emption. This section provides a new semantics for our language,

subsequently referred to as CCSsl (CCS with static priority and local pre-emption), which is distinguished

from the one developed in the previous section by the design decision that it only allows actions to pre-empt

others at the same \location" and therefore captures a notion of localized precedence. This constraint reects

an essential intuition about distributed systems, namely, that the execution of a process on one processor

should not a�ect the behavior of a process on another processor unless the designer explicitly builds an

interaction, e.g., a synchronization, between them.

Appl

Bench1 Bench2

dma dma

fetch2fetch1

Fig. 4.1. Example system

The following example demonstrates the necessity to consider locations when reasoning about priority

within distributed systems. The example system consists of an application that manipulates data from two

memory benches (cf. Figure 4.1). In order to improve the e�ciency in the computer system, each bench,

Bench1 and Bench2, is connected to a direct-memory-access (DMA) controller. To overcome the low speed of

most memory modules, the application Appl works alternately with each memory bench. We model Appl in

CCSsl by Appl
def
= fetch1:fetch2:Appl. Each memory bench, Bench1 and Bench2, is continuously able to serve

the application or to allow the external DMA controller to access the memory via the channel dma. However,

if a memory bench has to decide between both activities, then it chooses the former since the progress of the

application is considered more important. Consequently, we de�ne Bench1
def
= fetch1:Bench1+ dma:Bench1

16

and Bench2
def
= fetch2:Bench2+ dma:Bench2. The overall system Sys is given by

Sys
def
=(Appl j Bench1 j Bench2) n ffetch1; fetch2g :

Since the application uses the memory cells alternately, the DMA is expected to be allowed to access the

memory bench which is currently not serving the application. However, using the approach to priority

involving global pre-emption presented in Section 3 all dma-transitions in the labeled transition system of

Sys are pre-empted since the application can inde�nitely engage in a prioritized communication, i.e., direct-

memory-access is never granted.

Generally speaking, one would expect that priorities at di�erent sites of a distributed system do not

inuence the behavior of each other, i.e., priorities at di�erent sites are supposed to be incomparable.

The semantics given in Section 3 does not permit this distinction to be made; the net e�ect is that some

computations that one would expect to �nd in a distributed system are improperly suppressed. It has been

proposed to remedy this shortcoming regarding distributed systems by introducing local pre-emption [23, 27].

The remainder of this section is organized as follows. The next section introduces a notion of loca-

tions that is used in Section 4.2 for the de�nition of the operational semantics of CCSsl with a two-level

priority-scheme. Sections 4.3 and 4.4 develop the semantic theories based on strong and weak bisimula-

tion, respectively, while Section 4.5 re-considers the direct-memory-access example presented above. The

consequences of lifting some design decisions in CCSsl are discussed in Section 4.6. After extending CCSsl

to a multi-level priority-scheme in Section 4.7 and presenting another approach to priority taken from [23]

in Section 4.8, a formal comparison of the two approaches is given in Section 4.9. Finally, Section 4.10

concludes with some additional remarks and comments on related work.

4.1. Locations. We now introduce the notion of location, which will be used in the next section in the

operational semantics for CCSsl as a basis for deciding when one transition pre-empts another. Intuitively, a

location represents the \address(es)" of subterm(s) inside a larger term; when a system performs an action,

CCSsl semantics will also note the location of the subterm(s) that \generate(s)" this action. Observe that

because of the potential for synchronization more than one subterm may be involved in an action. The

account of locations closely follows that of [27, 56].

Formally, let Aaddr =df fL;R; l; rg be the address alphabet, and let � be a special symbol not in Aaddr.

Then, Addr =df f�s j s 2 A�
addrg represents the set of (process) addresses ranged over by v; w. Intuitively, an

element of Addr represents the address of a subterm, with � denoting the current term, l (r) representing the

left (right) subterm of + , and L (R) the left (right) subterm of j . For example, in the process (a:0 j b:0)+c:0,

the address of a:0 is �Ll, of b:0 is �Rl, and of c:0 is �r. If �s1 and �s2 are addresses, then we write

�s1 � �s2 = �s1s2 to represent address concatenation (where s1s2 represents the usual concatenation of

elements in A�
addr). Further, if V � Addr and � 2 Aaddr, then we write V � � for fv � � j v 2 V g. Occasionally,

we omit � from addresses.

As mentioned in the previous section, we want to adopt the view that processes at di�erent sides of the

parallel composition operator are logically { not necessarily physically { executed on di�erent processors.

Thus, priorities on di�erent sides of the parallel composition operator are distributed and, therefore, should

be incomparable. However, priorities on di�erent sides of the summation operator should be comparable

since argument processes of summation are logically scheduled on the same processor. This intuition is

formalized in the following comparability relation on addresses which is adapted from [35].

17

Table 4.1

Distributed prioritized initial action sets for CCSsl

Im(�x:P) = Im(P [�x:P=x]) I�(�:P) = f�g

Im�l(P +Q) = Im(P) In�r(P +Q) = In(Q)

Im(P [f]) = ff(�) j� 2 Im(P)g Im(P n L) = Im(P) n (L [L)

Im�L(P jQ) = Im(P) In�R(P jQ) = In(Q)

Ihm�L;n�Ri(P jQ) = f� j Im(P) \ In(Q) 6= ;g

Definition 4.1 (Comparability Relation). The comparability relation ./ on addresses is the smallest

reexive and symmetric subset of Addr �Addr such that for all v; w 2 Addr:

1. hv � l; w � ri 2 ./, and

2. hv; wi 2 ./ implies hv � �; w � �i 2 ./ for � 2 Aaddr.

In the sequel we write v ./ w instead of hv; wi 2 ./. If v 2 Addr then we use [v] to denote the set

fw 2 Addr j v ./ wg. Observe that the comparability relation is not transitive, e.g., we have Ll ./ r and

r ./ Rl, but Ll 6./ Rl, since L 6./ R.

We may now de�ne the set Loc of (transition) locations as Addr [(Addr � Addr). Intuitively, a

transition location records the addresses of the components in a term that participate in the execution of

a given action. In our language, transitions are performed by single processes or pairs of processes (in the

case of a synchronization). We de�ne hv; wi � � =df hv � �; w � �i and [hv; wi] =df [v] [[w] where v; w 2 Addr

and � 2 Aaddr. We use m;n; o; : : : to range over Loc in what follows.

4.2. Operational Semantics. The operational semantics of a CCSsl process P is given by a labeled

transition system. The transition relation �!� P � (Loc�A)�P with respect to unprioritized actions is

de�ned in Table 4.2 using Plotkin-style operational rules [63] whereas for prioritized actions the same rules

as for CCSsg apply (see Table 3.2). We write P m;���!P 0 if hP; hm;�i; P 0i 2�! and say that P may engage

in action � o�ered from location m and thereafter behave like process P 0. Note that prioritized transitions

do not need to be labeled with locations since they can never be pre-empted.

The presentation of the operational rules requires distributed prioritized initial action sets, which are

de�ned as the least sets satisfying the equations in Table 4.1. Intuitively, Im(P) denotes the set of all

prioritized initial actions of P from location m. Note that these sets are either empty or contain exactly

one initial action. Im(P) = ; means that either m is not a location of P or P is incapable of performing

a prioritized action at location m. Additionally, let us denote the set
S
fIm(P) jm 2 Mg of all distributed

prioritized initial actions of P from locations M � Loc by IM (P) and the set ILoc(P) of all distributed

prioritized initial actions of P by I(P). We also de�ne analogue sets restricted to visible actions: IIM (P) =df

IM (P) n f�g and II(P) =df I(P) n f�g, respectively.

The side conditions of the operational rules guarantee that a process does not perform an unprioritized

action if it can engage in a prioritized synchronization or internal computation, i.e., a � -transition, from a

comparable location. In contrast to the global notion of pre-emption de�ned in Section 3, the local notion

here is much weaker since II [m](P) � II(P) for all m 2 Loc and P 2 P. In other words, local pre-emption

18

Table 4.2

Operational semantics for CCSsl

Act
��

�:P �;���!P
Sum1

P m;���!P 0

P +Q m�l;����!P 0
� =2 I(Q)

Rel
P m;���!P 0

P [f] m;f(�)����!P 0[f]
Sum2

Q n;���!Q0

P +Q n�r;����!Q0
� =2 I(P)

Res
P m;���!P 0

P n L m;���!P 0 n L
� =2 L [L Com1

P m;���!P 0

P jQ m�L;�����!P 0jQ
II [m](P) \ II(Q) = ;

Rec
P [�x:P=x] m;���!P 0

�x:P m;���!P 0
Com2

Q n;���!Q0

P jQ n�R;����!P jQ0
II [n](Q) \ II(P) = ;

Com3
P m;a��!P 0 Q n;a��!Q0

P jQ hm�L;n�Ri;���������!P 0jQ0

II [m](P) \ II(Q) = ;^

II [n](Q) \ II(P) = ;

does not pre-empt as many transitions as global pre-emption does. The di�erence between CCSsl and CCSsg

semantics arises by the side conditions of the rules for parallel composition with respect to unprioritized

transitions. Since locations on di�erent sides of a parallel operator are incomparable, � 's arising from a

location of P (Q) cannot pre-empt the execution of a transition, even an unprioritized one, of Q (P). Only

if P (Q) engages in a prioritized synchronization with Q (P) can unprioritized actions from a comparable

location of P (Q) be pre-empted.

4.3. Semantic Theory Based on Strong Bisimulation. Just as in Section 3, we present an equiv-

alence relation for CCSsl processes that is based on bisimulation [61]. Our aim is to characterize the largest

congruence contained in the \naive" adaptation of strong bisimulation [52] to our framework obtained by

ignoring location information.

Definition 4.2 (Naive Distributed Prioritized Strong Bisimulation). A symmetric relation R � P �P

is called naive distributed prioritized strong bisimulation if for every hP;Qi 2 R and 2 A the following

condition holds.

P

�! P 0 implies 9Q0: Q

�! Q0 and hP 0; Q0i 2 R :

We write P ' Q if there exists a naive distributed prioritized strong bisimulation R such that hP;Qi 2 R.

Although ' is an equivalence, it is unfortunately { in contrast to the situation in Section 3.2 { not

a congruence. The lack of compositionality is demonstrated by the following example, which embod-

ies the traditional view that \parallelism = nondeterminism." We have a:b:0 + b:a:0 ' a:0 j b:0 but

(a:b:0 + b:a:0) j b:0 6' (a:0 j b:0) j b:0, since the latter process can perform an a-transition while the corre-

sponding a-transition of the former is pre-empted because the right process in the summation can engage

in a prioritized communication. The above observation is not surprising since the distribution of processes

inuences the pre-emption of transitions and, consequently, the bisimulation. However, we know by Propo-

sition 3.6 that ' includes a largest congruence '+ for CCSsl.

19

Table 4.3

Axiomatization of 'l (Axioms E)

(iA1) t� u = u� t (iA2) t� (u� v) = (t� u)� v

(iA3) t� t = t (iA4) t� 0 = t

(E) t �
L

i

P
j ij :tij and u �

L
k

P
l �kl:ukl implies t ju =L

i

P
j(ij :(tij ju) +

P
k

P
lf�:(tij jukl) j ij � �kl; ij ; �kl 2 Ag

+
P

k

P
lf� :(tij jukl) j ij � �kl; ij ; �kl 2 Ag) �L

k

P
l(�kl:(t jukl) +

P
i

P
jf�:(tij jukl) j ij � �kl; ij ; �kl 2 Ag

+
P

i

P
jf� :(tij jukl) j ij � �kl; ij ; �kl 2 Ag)

(iRes4) (t� u) n L = (t n L)� (u n L) (iRel3) (t� u)[f] = t[f]� u[f]

4.3.1. Distributed Prioritized Strong Bisimulation. In the remainder, we develop a characteri-

zation of '+ . To do so we need to take local pre-emption into account.

Definition 4.3. A symmetric relation R � P � P is a distributed prioritized strong bisimulation if

for every hP;Qi 2 R, � 2 A, � 2 A, and m 2 Loc the following conditions hold.

1. P
�
�! P 0 implies 9Q0: Q

�
�! Q0 and hP 0; Q0i 2 R.

2. P m;���!P 0 implies 9Q0; n:Q n;���!Q0 ; II [n](Q) � II [m](P) ; and hP
0; Q0i 2 R.

We write P 'lQ if hP;Qi 2 R for some distributed prioritized strong bisimulation R.

Intuitively, the distributed prioritized initial action set of a process with respect to some location is a measure

of the pre-emptive power of the process relative to that location. Thus, the second condition of De�nition 4.3

states that an unprioritized action � from some location m of the process P must be matched by the same

action from some location n of Q and that the pre-emptive power of Q relative to n is at most as strong as

the pre-emptive power of P relative to m. The following theorem is the main result of this section.

Theorem 4.4. 'l is the largest congruence contained in '.

We refer for the proof to [50]. The context needed in the largest congruence proof is similar to the one used

in Section 3.3.

4.3.2. Axiomatic Characterization. In this section we present an axiomatization of 'l with respect

to �nite processes for which we introduce a new binary summation operator � to the process algebra CCSsl.

This operator is called distributed summation and is needed for giving an Expansion Axiom (cf. Axiom (E) in

Table 4.3). Its operational semantics is de�ned below and di�ers form the nondeterministic choice operator

+ in that a location from its left argument is never comparable to one from its right argument.

dSum1
t

�
�! t0

t� u
�
�! t0

dSum1
t m;���! t0

t� u m�L;�����! t0
dSum2

u
�
�! u0

t� u
�
�! u0

dSum2
u n;���!u0

t� u n�R;����!u0

It can easily be checked that 'l is also compositional with respect to �.

20

Table 4.4

Axioms E (continued)

(D1) (t� t0) + (u� u0) = ((t� t0) + u0)� ((u� u0) + t0) (`I tvi t
0 ; `I uvi u

0)

(D2) (t� u) + �:v = (t+ �:v)� (u+ �:v)

(Ic1) t� �:u = t+ �:u (\t)

(Ic2) (�:t+ u) = (�:t+ u)� �:t

(S1) (t+ �:u)� (t0 + �:u0) = (t+ �:u+ �:u0)� (t0 + �:u0)

(S2) (t+ �:v) � (u+ �:v) = (t+ �:v) � u (`I tvi u)

(S3) t� u = t+ u (`I t=i u)

Now, we turn to the axiom system for distributed prioritized strong bisimulation. We write `E t =

u if term t can be rewritten to u using the axioms in Tables 4.3 and 4.4 as well as Axioms (A1){(A4),

Axioms (Res1){(Res4), Axioms (Rel1){(Rel3), and Axiom (P) from Table 3.3. Axioms (Ic1), (D1), (S2),

and (S3) involve side conditions. Regarding Axiom (Ic1), we introduce the unary predicate \ over processes

(of the form
P

j2J j :tj for some nonempty index set J) together with the following proof rules: (i) \�:t and

(ii) \t and \u implies \(t+ u). Intuitively, \(
P

j2J j :tj) if and only if j 2 A for all j 2 J . The relation vi is

de�ned as in Section 3.5 (see Table 3.8). The axioms in Table 4.3 are basically those given in Table 3.3 and

augmented with the corresponding axioms for the distributed summation operator. Moreover, the Expansion

Axiom has been adapted for our algebra (cf. Axiom (E) where
P

is the indexed version of +, and
L

is the

indexed version of �). Note that parallelism in CCSsl cannot be resolved in nondeterminism by using the

operator + only, since priorities on di�erent sides of j are incomparable, but on di�erent sides of + they

are comparable. The introduction of the operator � solves this problem. The axioms in Table 4.4 show how

we may \restructure" locations. They deal with the distributivity of the summation operators (Axioms (D1)

and (D2)), the interchangeability of the summation operators (Axioms (Ic1) and (Ic2)), and the saturation

of locations (Axioms (S1), (S2), and (S3)), respectively. The proof of the next theorem can be found in [27].

Theorem 4.5. Let t and u be �nite processes. Then `E t = u if and only if t'l u.

4.3.3. Operational Characterization. The following de�nition introduces an equivalence '� which

characterizes 'l as standard strong bisimulation [50]. It uses the notation P
�
�!
L
P 0 for P; P 0 2 P, � 2 A,

and L � A n f�g whenever 9m 2 Loc: P m;���!P 0 and II [m](P) � L. Note that these enriched transitions

take local pre-emption potential into account, thereby avoiding the explicit annotation of transitions with

locations.

Definition 4.6. A symmetric relation R � P � P is an alternative distributed prioritized strong

bisimulation if for every hP;Qi 2 R, � 2 A, � 2 A, and L � A n f�g the following conditions hold.

1. P
�
�! P 0 implies 9Q0: Q

�
�! Q0 and hP 0; Q0i 2 R.

2. P
�
�!
L
P 0 implies 9Q0: Q

�
�!
L
Q0 and hP 0; Q0i 2 R.

We write P '�Q if hP;Qi 2 R for some alternative distributed prioritized strong bisimulation R.

Similar as in Section 3.3.3 we obtain an operational characterization of our behavioral relation.

Theorem 4.7 (Operational Characterization). 'l = '�.

21

4.4. Semantic Theory Based on Weak Bisimulation. As for CCSsg, we develop a coarser behav-

ioral bisimulation-based congruence by abstracting from internal actions. We start o� with the de�nition of

a naive distributed prioritized weak bisimulation, which is an adaptation of observational equivalence [52].

Definition 4.8 (Naive Distributed Prioritized Weak Transition Relation).

(i) ̂ =df �, if 2 f� ; �g, and ̂ =df , otherwise (ii)
�

=)�=df (
�
�! [

S
f m;���! jm 2 Locg)�

(iii)
�
=)�=df

�
=)� �

�
�! �

�
=)� (iv)

m;�
=)�=df

�
=)� � m;���!�

�
=)�

In the following we write P
�
=)� P 0 for 9m 2 Loc: P

m;�
=)� P 0.

Definition 4.9 (Naive Distributed Prioritized Weak Bisimulation). A symmetric relation R � P �P

is a naive distributed prioritized weak bisimulation if for every hP;Qi 2 R and 2 A the following condition

holds.

P

�! P 0 implies 9Q0: Q

̂
=)� Q0 and hP 0; Q0i 2 R :

We write P ��Q if hP;Qi 2 R for some naive distributed prioritized weak bisimulation R.

It is fairly easy to see that �� is not a congruence for CCSsl. One compositionality defect arises with

respect to parallel composition and is similar to the one mentioned for naive distributed prioritized strong

bisimulation. Another defect, which is carried over from CCS, is concerned with the summation operators.

4.4.1. Distributed Prioritized Weak Bisimulation. We devote the rest of this section to charac-

terizing the largest congruence contained in the naive distributed prioritized weak bisimulation. To do so,

we �rst re-de�ne the weak transition relation.

Definition 4.10 (Distributed Prioritized Weak Transition Relation). For L;M � A n f�g we de�ne

the following notations.

(i) �̂ =df �, â =df a, �̂ =df �, â =df a (ii) P
m;�
�!
L

P 0 if P m;���!P 0 and II [m](P) � L

(iii)
�

=)=df (
�
�! [

S
f
m;�
�!
;
jm 2 Locg)� (iv)

�
=)=df

�
=) �

�
�! �

�
=)

(v)
�

=)
L

=df (
�
�! [

S
f
m;�
�!
L
jm 2 Locg)� (vi) P

m;�
=)
L;M

P 0 if 9P 00: P
�

=)
L
P 00 m;�

�!
L

�
=) P 0 and II(P 00) �M .

Intuitively, these de�nitions are designed to reect constraints that a process environment must satisfy in

order for the given transition to be enabled. Thus, P
m;�
�!
L

P 0 means that P can engage in action � at location

m to P 0 provided that the environment does not o�er a prioritized communication involving actions in L. If

the environment were to o�er such a communication, the result would be a � at a comparable location tom in

P , which would pre-empt the �. In a similar vein, P
�

=) P 0 holds if P can evolve to P 0 via a nonpre-emptable

sequence of internal transitions, regardless of the environment's behavior. These internal transitions should

therefore involve either � , which can never be pre-empted, or � , in which case no prioritized actions should

be enabled at the same location. Likewise, P
�

=)
L
P 0 means that, so long as the environment does not o�er

to synchronize with P using the prioritized actions in L, the process P may engage in a sequence of internal

computation steps and become P 0. Finally, the M -parameter in
m;�
=)
L;M

provides a measure of the pre-emptive

impact that a process can have on its environment. From the de�nition, P
m;�
=)
L;M

P 0 is true if P can engage in

some internal computation followed by �, so long as the environment refrains from synchronizations in L, and

then some nonpre-emptable internal computation to arrive at P 0. In addition, the state at which � is enabled

should only o�er prioritized communications in M . Note that the de�nition of P
�

=)
L
P 0 is in accordance with

our intuition that internal actions, and therefore their locations, are unobservable. Moreover, an environment

of P is not inuenced by internal actions performed by P since priorities arising from di�erent sides of the

22

parallel composition operator are incomparable. Therefore, the parameterM is unnecessary in the de�nition

of the relation
�

=)
L
. Finally, for notational convenience

m;�
=)
L;M

is interpreted as
�

=)
L
.

Definition 4.11 (Distributed Prioritized Weak Bisimulation). A symmetric relation R � P � P is a

distributed prioritized weak bisimulation if for every hP;Qi 2 R, � 2 A, � 2 A, and m 2 Loc the following

conditions hold.

1. 9Q0; Q00: Q
�

=) Q00 �
=) Q0; II(Q00) � II(P); and hP;Q0i 2 R.

2. P
�
�! P 0 implies 9Q0: Q

�̂
=) Q0 and hP 0; Q0i 2 R.

3. P m;���!P 0 implies 9Q0; n:Q
n;�̂
=)
L;M

Q0; L = II [m](P); M = II(P); and hP 0; Q0i 2 R.

We write P �Q if hP;Qi 2 R for some distributed prioritized weak bisimulation R.

Condition (1) of De�nition 4.11 guarantees that distributed prioritized weak bisimulation is compositional

with respect to parallel composition. Its necessity is best illustrated by the following example. The processes

P
def
= � :a:0 and Q

def
= a:0 would be considered equivalent if Condition (1) were absent. However, the context

C[X]
def
= X j(a:0+b:0) distinguishes them. The following proposition is the CCSsl equivalent of Proposition 3.9.

Proposition 4.12. The equivalence relation � is a congruence with respect to pre�xing, parallel

composition, relabeling, and restriction. Moreover, � is characterized as the largest congruence contained

in �� , in the sub-algebra of CCSsl induced by these operators and recursion.

4.4.2. Distributed Prioritized Observational Congruence. Analogue to Section 3, the summation

�x presented in [52] is not su�cient in order to achieve a congruence relation.

Definition 4.13. We de�ne P �lQ if for all � 2 A, � 2 A, and m 2 Loc the following conditions and

their symmetric counterparts hold.

1. I(P) � I(Q)

2. P
�
�! P 0 implies 9Q0: Q

�
=) Q0 and P 0�Q0.

3. P m;���!P 0 implies 9Q0; n:Q
n;�
=)
L;M

Q0; L = II [m](P);M = II(P); and P 0�Q0.

The following theorem can be proved by following the technique already presented in Section 3.3.2 (cf. [50]).

Theorem 4.14. �l is the largest congruence contained in ��.

4.4.3. Operational Characterization. We now characterize distributed prioritized weak bisimula-

tion as standard bisimulation over an appropriately de�ned transition relation. To begin with, we introduce

a family of relations =)
M

on processes, where M � A n f�g, by de�ning P =)
M

P 0 if 9P 00: P
�

=) P 00 �
=)

P 0 and II(P 00) �M . Moreover, we write P
�̂
=)
L;M

P 0 whenever there exists some m 2 Loc such that P
m;�̂
=)
L;M

P 0.

Definition 4.15. A symmetric relation R � P � P is an alternative distributed prioritized weak

bisimulation if for every hP;Qi 2 R, � 2 A, � 2 A, and L;M � A n f�g the following conditions hold.

1. P =)
M

P 0 implies 9Q0: Q=)
M

Q0 and hP 0; Q0i 2 R.

2. P
�̂
=) P 0 implies 9Q0: Q

�̂
=) Q0 and hP 0; Q0i 2 R.

3. P
�̂
=)
L;M

P 0 implies 9Q0: Q
�̂
=)
L;M

Q0 and hP 0; Q0i 2 R.

We write P ��Q if hP;Qi 2 R for some alternative distributed prioritized weak bisimulation R.

Theorem 4.16 (Operational Characterization). � = ��.

The interested reader can �nd the proof of this theorem in [50].

23

4.5. Example. We now return to the direct-memory-access example system introduced in the beginning

of Section 4. The CCSsl semantics of Sys, which corresponds to our intuition regarding distributed systems,

is given in Figure 4.2 where we abstract away the locations.

τ

τ

dmadma

Fig. 4.2. Semantics of the dma-system

As stated before, the application uses the two memory cells alternately. Thus, the DMA is expected to

be allowed to access the free memory bench. Accordingly, the speci�cation of the system can be formalized

by Spec
def
= dma:Spec. It is easy to see that the symmetric closure of

fhSpec; Sysi; hSpec; (fetch2:Appl j Bench1 j Bench2) n ffetch1; fetch2gig

is a distributed prioritized weak bisimulation. Therefore, Spec�Sys as expected, i.e., the system Sys meets

its speci�cation Spec.

4.6. Discussion on the Removal of Some Restrictive Design Decisions. Up to now we have

restricted the number of priority levels in CCSsl to two and communication to complementary actions having

the same priority. In this section we study the implications of the removal of these restrictions leading to a

new version of CCSsl, called CCSslml (CCS
sl with a multi-level priority-scheme), that is formally de�ned in the

next section.

Allowing communication between unprioritized actions and complementary prioritized actions raises the

question of whether the resulting internal action should be � or � . When dealing with local pre-emption,

this decision has no important consequences for sequential communicating processes, i.e., those in standard

concurrent form [52]; however, it is of obvious importance for processes like (a:0 ja:0)+ b:0 in which one has

to decide if the b-transition is enabled. One reasonable view is that a communication should be pre-empted

whenever one communication partner is pre-empted, i.e., cannot engage in a communication. This implies

that the minimal priority of the complementary actions ought to be assigned to the internal action. To

reect this in the operational semantics, one could replace Rules (Com1), (Com2), and (Com3) for parallel

composition by the ones presented in Table 4.5 plus their symmetric versions. The side conditions involve

sets II(P) that include all unprioritized visible actions in which P can initially engage.

It turns out that the largest congruence results concerning distributed prioritized strong bisimulation

and distributed prioritized observational congruence can be carried over to the new calculus; however, the

new semantics has algebraic shortcomings, since parallel composition is not associative, as illustrated by

the following example. Consider the process (b:0 + a:0) j(a:0 + c:0) j c:0. When computing the semantics

in a left-associative manner, the initial b-transition is pre-empted according to Rule (Com1) since a may

potentially communicate with a. However, when �rst composing the second and third parallel components,

the a-transition is pre-empted, and consequently the b-transition is enabled by Rule (Com1). The reason

for this problem is that transitions are pre-empted because the considered process can potentially engage

in a higher prioritized communication from a comparable location. However, this potential communication

cannot take place if the communication partner is itself pre-empted. The same problem also arises when

extending CCSsl to multiple priority levels, even if communication is only allowed on complementary actions

24

Table 4.5

Modi�ed operational rules

Com1
P m;���!P 0

P jQ m�L;�����!P 0jQ
II [m](P) \ (II(Q) [II(Q)) = ;

Com3a
P m;a��!P 0 Q n;a��!Q0

P jQ hm�L;n�Ri;���������!P 0jQ0

II [m](P) \ (II(Q) [II(Q)) = ; ^

II [n](Q) \ (II(P) [II(P)) = ;

Com3b
P m;a��!P 0 Q n;a��!Q0

P jQ hm�L;n�Ri;���������!P 0jQ0
II [n](Q) \ (II(P) [II(P)) = ;

of the same priority as can be observed by using an adaptation of the previous example: (b :2:0+ a :1:0) j(a :

1:0+ c :0:0) j c :0:0.

One can imagine two approaches to �xing the problems with the �rst (and second) alteration to the

theory. One is to change the operational semantics; in particular, the side conditions could be weakened

so that an unprioritized transition is only pre-empted when a prioritized action from a comparable location

can actually engage in a communication. This approach has not been investigated in the literature, yet.

The second solution follows an approach developed in [23] for a di�erent setting and involves the use of

a syntax restriction on processes prohibiting output actions, i.e., actions in �, from occurring as initial

actions of processes that are in the scope of +. Hence, all potential communication partners are also actual

ones, and the standard side conditions for parallel composition are su�cient to encode the desired notion

of pre-emption. It is important to mention that the proposed syntax restriction still allows one to specify

many practically relevant examples within the calculus. Indeed, a similar restriction may be found in the

programming language occam [41].

4.7. Extension to Multi-level Priority-schemes. For CCSslml, we allow a multi-level priority-scheme

and communication between complementary actions with potentially di�erent priorities. As seen in the

previous section, both of these relaxations yield a semantics for which parallel composition is not associative.

However, we have also argued that this problem vanishes if the syntax is restricted such that output actions

never get pre-empted. We adapt the syntax restriction proposed by Camilleri and Winskel [23], stating that

initial actions in the scope of a comparable summation operator are input actions. Therefore, input and

output actions are explicitly distinguished in CCSslml, where the internal action � is also treated as input

action. In the following, we let a; b; : : : range over the set � of input ports and a; b; : : : over the set �

of output ports. Moreover, we let stand for the silent action � or an input action and let � range over

A =df � [� [f�g. Since the priority values of output actions need never be compared with other priority

values in the restricted syntax, there are no priority values associated with output actions. The syntax of

CCSslml is formally de�ned by the following BNF for P .

I ::= 0 j x j :k:I j I + I j I � I j I j I j I [f] j I n L j �x:I

P ::= 0 j x j � :k:P j I + I j P � P j P jP j P [f] j P n L j �x:P

Here, f is an injective, �nite relabeling, L � � [� is a restriction set, and x is a variable taken from a

countable domain V . A relabeling satis�es the properties f(�) � �, f(�) � �, f(�) = � , and f(a) = f(a).

25

Thus, additionally to the requirements of a �nite relabeling in CCS, relabelings in CCSslml may only map

input ports to input ports and output ports to output ports. Since actions attached with di�erent priority

values do not represent di�erent ports here, relabelings and restriction sets do not deal with priority values.

Thus, the priority value of a relabeled transition remains the same, i.e., there is no implicit mechanism for

prioritization or deprioritization (cf. Section 3.5). In the sequel, we write Psl
ml for the set of CCS

sl
ml processes.

Table 4.6

Initial output action sets for CCSslml

II(�x:P) = II(P [�x:P=x]) II(a:P) = fag

II(P jQ) = II(P) [II(Q) II(P �Q) = II(P) [II(Q)

II(P [f]) = ff(a) ja 2 II(P)g II(P n L) = II(P) n (L [L)

The semantics of CCSslml processes are again labeled transition systems whose transition relations are

speci�ed by operational rules. Since output transitions cannot get pre-empted they do also not need an

associated priority value, and output transitions do not need to take account of locations. We �rst present

two auxiliary sets used when presenting the operational rules, namely (i) initial output action sets II(P) of

a process P and (ii) initial input action sets Ikm(P) of P with respect to a priority value k and a location m,

which are de�ned to be the smallest sets satisfying the equations presented in Tables 4.6 and 4.7, respectively.

For technical convenience we remove the complement of output actions in the de�nition of II(�), and we use

the following abbreviations: (i) I<kM (P) =df

S
fIlm(P) jm 2 M; l < kg, (ii) II<kM (P) =df I<kM (P) n f�g,

(iii) I(P) =df

S
fIlm(P) jm 2 Loc; l 2 Ng, and (iv) II(P) =df I(P) n f�g.

Table 4.7

Initial input action sets for CCSslml

Ikm(�x:P) = Ikm(P [�x:P=x]) Ik�(: l:P) = f j k = lg

Ikm�l(P +Q) = Ikm(P) Ikm�L(P �Q) = Ikm(P)

Ikn�r(P +Q) = Ikn(Q) Ikn�R(P �Q) = Ikn(Q)

Ikm(P [f]) = ff() j 2 Ikm(P)g Ikm�L(P jQ) = Ikm(P) [f� j I
k
m(P) \ II(Q) 6= ;g

Ikm(P n L) = Ikm(P) n (L [L) Ikn�R(P jQ) = Ikn(Q) [f� j I
k
n(Q) \ II(P) 6= ;g

The operational rules for CCSslml semantics are formally stated in Table 4.8 for output transitions and

in Table 4.9 for input transitions. As expected, the rules for output transitions coincide with the ones for

plain CCS [52] whereas the rules for input transitions take local pre-emption into account, thereby using

location and priority value information in their side conditions. It is worth having a closer look at the side

conditions of Rules (Sum1) and (Sum2) which di�er in principle from the corresponding ones of CCSsl. They

guarantee that an initial : l-transition of a process P is also pre-empted whenever there exists a higher

prioritized initial :k-transition of P , i.e., if k < l. This additional kind of pre-emption reects that output

transitions can communicate with a complementary input transition regardless of its priority value, i.e., if

more than one communication partner o�ering the matching input transition is available from comparable

locations, the one attached with the highest priority is taken. This kind of pre-emption requires relabelings

26

Table 4.8

Operational semantics for CCSslml wrt. output transitions

Act
��

a:P
a
�! P

iSum1
P

a
�! P 0

P �Q
a
�! P 0

Com1
P

a
�! P 0

P jQ
a
�! P 0 jQ

Rel
P

a
�! P 0

P [f]
f(a)
�! P 0[f]

iSum2
Q

a
�! Q0

P �Q
a
�! Q0

Com2
Q

a
�! Q0

P jQ
a
�! P jQ0

Rec
P [�x:P=x]

a
�! P 0

�x:P
a
�! P 0

Res
P

a
�! P 0

P n L
a
�! P 0 n L

a =2 L [L

Table 4.9

Operational semantics for CCSslml wrt. input transitions

Act
��

 :k:P �;:k���!P
Sum1

P m;:k���!P 0

P +Q m�l;:k����!P 0
�; =2 I<k(Q)

iSum1
P m;:k���!P 0

P �Q m�L;:k�����!P 0
Sum2

Q n;:k���!Q0

P +Q n�r;:k����!Q0
�; =2 I<k(P)

iSum2
Q n;:k���!Q0

P �Q n�R;:k����!Q0
Com1

P m;:k���!P 0

P jQ m�L;:k�����!P 0 jQ
II<k[m](P) \ II(Q) = ;

Rel
P m;:k���!P 0

P [f] m;f():k�����!P 0[f]
Com2

Q n;:k���!Q0

P jQ n�R;:k����!P jQ0
II<k[n] (Q) \ II(P) = ;

Rec
P [�x:P=x] m;:k���!P 0

�x:P m;:k���!P 0
Com3

P m;a:k���!P 0 Q a�!Q0

P jQ m�L;� :k�����!P 0 jQ0
II<k[m](P) \ II(Q) = ;

Res
P m;:k���!P 0

P n L m;:k���!P 0 n L
 =2 L [L Com4

P a�!P 0 Q n;a:k���!Q0

P jQ n�R;� :k����!P 0 jQ0
II<k[n] (Q) \ II(P) = ;

to be restricted to injective ones as is pointed out in [23].

The behavioral relations de�ned for CCSsl can be adapted to CCSslml in a straightforward fashion, as we

demonstrate by the notion of distributed prioritized strong bisimulation.

Definition 4.17. A symmetric relation R � P �P is a distributed prioritized strong bisimulation for

CCSslml if for every hP;Qi 2 R, a 2 �, 2 � [f�g, k 2 N , and m 2 Loc, the following conditions hold.

1. P
a
�! P 0 implies 9Q0: Q

a
�! Q0 and hP 0; Q0i 2 R, and

2. P m;:k���!P 0 implies 9Q0; l; n:Q n;:l���!Q0; II<l[n](Q) � II<k[m](P); and hP
0; Q0i 2 R.

We write P 'ml Q if hP;Qi 2 R for a distributed prioritized strong bisimulation R for CCSslml.

27

Proposition 4.18. The relation 'ml is compositional with respect to all operators except summation.

The proof can be done by using standard techniques [52] and, therefore, is omitted here. The reason for the

compositionality lack with respect to summation is illustrated by the following example: a :0:0 'ml a :1:0

holds, but a :0:0 + � :0:0 6'ml a :1:0 + � :0:0 since the former process can engage in a transition labeled by

action a whereas the latter cannot. Although this defect can easily be repaired (note the analogy with weak

bisimulation [52]) we do not elaborate on this further since it is not of importance here.

4.8. Camilleri and Winskel's Approach. Here, we briey review Camilleri and Winskel's approach

to priority [23], which we refer to as CCScw (CCS with priority due to Camilleri and Winskel). In contrast to

the approaches considered so far, this process algebra with priority does not assign priority values to actions.

Instead, there exists a special summation operator +i in CCScw, called prioritized choice, which favors its

left over its right argument. The syntax of CCScw terms is given by the following BNF for P .

I ::= 0 j x j :I j I +i I j I + I j I j I j I [f] j I n L j �x:I

P ::= 0 j x j �:P j I +i I j P + P j P jP j P [f] j P n L j �x:P

Here, the action , the injective, �nite relabeling f , and the restriction set L satisfy the same restrictions as

in the previous section. Again, closed and guarded terms determine the set Pcw of CCScw processes. Further,

we introduce initial output and input action sets as displayed in Tables 4.10 and 4.11, respectively, and write

IIcw(P) for Icw(P) n f�g.

Table 4.10

Initial output action sets for CCScw

II
cw
(a:P) = fag II

cw
(�x:P) = II

cw
(P [�x:P=x])

II
cw
(P jQ) = II

cw
(P) [II

cw
(Q) II

cw
(P +Q) = II

cw
(P) [II

cw
(Q)

II
cw
(P [f]) = ff(a) j a 2 II

cw
(P)g II

cw
(P n L) = II

cw
(P) n (L [L)

Table 4.11

Initial input action sets for CCScw

Icw(:P) = fg Icw(�x:P) = Icw(P [�x:P=x])

Icw(P +iQ) = Icw(P) [Icw(Q) Icw(P +Q) = Icw(P) [Icw(Q)

Icw(P [f]) = ff() j 2 Icw(P)g Icw(P n L) = Icw(P) n (L [L)

Icw(P jQ) = Icw(P) [Icw(Q) [f� j Icw(P) \ II
cw
(Q) 6= ;g

The semantics of a CCScw process is given by a labeled transition system whose transition relation gives

rise to transitions of the form `cw
M P

�
! P 0, where M � �. Intuitively, process P can engage in an �-

transition to P 0 whenever the environment does not o�er communications on ports in M . Despite notational

di�erences, this is the same underlying principle as for some transition relations de�ned in the previous

sections which are also parameterized by initial action sets. Note that � 2 � implies M = ;. The CCScw

transition relation is formally de�ned in Table 4.12, where f(M) stands for ff(m) jm 2 Mg. Recall that

the initial actions of P in P +iQ are given preference over the initial actions of Q. Also, in this approach a

28

prioritized � , i.e., an internal action in which the left argument of +i can initially engage, has pre-emptive

power over unprioritized actions, i.e., actions in which the right argument of +i can initially engage. Thus,

the prioritized choice operator +i of [23] corresponds to the summation operator + in CCSslml. In [23] the

operator + stands for nondeterministic choice where priorities arising from the left and the right argument

are incomparable. This operator is matched by the distributed summation operator � in CCSslml. We further

investigate the correspondence of these operators in the next section.

Table 4.12

Operational semantics for CCScw

Act
��

`cw
; �:P

�
! P

Res
`cw
M P

�
! P 0

`cw

Mn(L[L)
P n L

�
! P 0 n L

� =2 L [L

Sum1
`cw
M P

�
! P 0

`cw
M P +iQ

�
! P 0

Sum2
`cw
N Q

�
! Q0

`cw
N[IIcw(P) P +iQ

�
! Q0

�; � =2 Icw(P)

iSum1
`cw
M P

�
! P 0

`cw
M P +Q

�
! P 0

Com1
`cw
M P

�
! P 0

`cw
M P jQ

�
! P 0 jQ

M \ II
cw
(Q) = ;

iSum2
`cw
N Q

�
! Q0

`cw
N P +Q

�
! Q0

Com2
`cw
N Q

�
! Q0

`cw
N P jQ

�
! P jQ0

N \ II
cw
(P) = ;

Rel
`cw
M P

�
! P 0

`cw
f(M) P [f]

f(�)
! P 0[f]

Com3
`cw
M P

a
! P 0 `cw

; Q
a
! Q0

`cw
M P jQ

�
! P 0 jQ0

M \ II
cw
(Q) = ;

Rec
`cw
M P [�x:P=x]

�
! P 0

`cw
M �x:P

�
! P 0

Com4
`cw
; P

a
! P 0 `cw

N Q
a
! Q0

`cw
N P jQ

�
! P 0 jQ0

N \ II
cw
(P) = ;

Camilleri and Winskel have also developed a bisimulation-based semantic theory for CCScw. Their notion

of strong bisimulation for CCScw, as de�ned below, is shown to be a congruence [23].

Definition 4.19. A symmetric relation R � P �P is a distributed prioritized strong bisimulation for

CCScw if for every hP;Qi 2 R, � 2 A, and M � � the following condition holds:

`cwM P
�
! P 0 implies 9Q0; N: `cwN Q

�
! Q0; N �M; and hP 0; Q0i 2 R :

We write P 'cwQ if hP;Qi 2 R for some distributed prioritized strong bisimulation R for CCScw.

4.9. Relating Both Priority Approaches. In this section we show that CCSslml and CCScw are closely

related by providing an embedding of CCScw in CCSslml. For this purposes we de�ne N =df f0; 1g� and the

strict order < on priority values to be the lexicographical order on N , where 1 is less than 0.

We now introduce the translation function �(�) : Pcw �! Psl
ml by de�ning �(P) =df �

�(P), which maps

CCScw terms to CCSslml terms. The functions �k(P), for k 2 N , are inductively de�ned over the structure

of CCScw processes as shown in Table 4.13. We note that the translation function is not surjective, e.g.,

29

Table 4.13

Translation function

�k(0) =df 0 �k(P +Q) =df �k(P)� �k(Q) �k(P nL) =df �k(P) n L

�k(x) =df x �k(P +iQ) =df �k0(P) + �k1(Q) �k(P [f]) =df �k(P)[f]

�k(:P) =df :k:��(P) �k(P jQ) =df �k(P) j �k(Q) �k(�x:P) =df �x:�k(P)

�k(a:P) =df a:��(P)

consider the process (a :0:0+ b :2:0)+ c :1:0 on which no CCScw process is mapped. This example also shows

that the notion of compositionality in CCScw is more restrictive than the one in CCSslml, since a comparable

summation can only be extended by summands which have a higher or a lower priority than the already

considered summands. The following theorem, which has been proved in [50], makes the semantic relationship

between a CCScw process P and its embedding �(P) precise.

Theorem 4.20. Let P;Q 2 Pcw. Then P 'cwQ if and only if �(P) 'ml �(Q).

As a consequence, distributed prioritized strong bisimulation for CCSslml is also compositional with respect to

summation in the sub-calculus of CCSslml induced by CCScw.

4.10. Concluding Remarks and Related Work. The consideration of a local concept of pre-

emption is also made by Hansson and Orava in [35], where Hoare's Communicating Sequential Processes

(CSP) [40] is extended with priority by assigning natural numbers to actions. As for CCSsl, they equipped

their operational semantics with a notion of location and introduced a sensitivity to locations when de�ning

pre-emption. Indeed, their work served as an inspiration for CCSsl. However, the authors only conjecture

that their version of strong bisimulation is a congruence, and they provide neither an axiomatization for

their behavioral relation nor a theory for observational congruence. One may also criticize their semantics

as not truly reecting distributed computation. In particular, despite having a local pre-emptive semantics

they compute a global priority for synchronizations.

After stressing the strong similarity of CCSsl to the process algebra CCScw in the previous section we

focus on the algebraic results established in these frameworks. In [23, 44] the transition relation is directly

annotated with pre-emption potentials. By plugging this relation into the de�nition of standard strong

bisimulation one immediately obtains a congruence. In contrast, [27] starts o� by de�ning naive distributed

prioritized strong bisimulation using the naive transition relation and considers the pre-emption potential

subsequently (by introducing the distributed prioritized initial action set condition). Then it is shown that

the resulting congruence is the largest congruence in the naive equivalence. Similarly, Jensen [44] de�nes a

naive distributed prioritized weak bisimulation based on the abovementioned annotated transition relation.

His naive weak transition relation corresponds to the distributed prioritized weak transition relation in CCSsl

if the parameter M is dropped. Because of the di�erence in the naive transition relations our abstraction

result is somewhat stronger than Jensen's, although the observational congruences appear to coincide.

One may wonder about the relationship between CCSsl and CCSsg, i.e., the static priority global pre-

emption language in Section 3. If in CCSsl the distributed summation operator is left out and pre-emption

is globalized by de�ning [m] =df Loc for all m 2 Loc, the operational semantics and the behavioral relations

reduce to the corresponding notions presented in Section 3.

30

Like Camilleri and Winskel, Barrett [7] devises a semantics of occam's priority mechanism that is ad-

ditionally concerned with fairness aspects. His semantic framework is based on a structural operational

semantics augmented with ready-guard sets which model possible inputs from the environment. Intuitively,

these sets characterize the nature of the contexts in which a transition is possible. Thus, they correspond to

the action sets with which the CCSsl and the CCScw transition relations are parameterized. However, Barrett

is not concerned with investigating behavioral relations but focuses on implementing occam's PRIALT and

PRIPAR constructs on the transputer platform.

In addition to Hansson and Orava, other researchers have also extended CSP [40] by a concept of static

priority. Inspired by the notion of priority in ADA [47], Fidge [31] has introduced new versions of the

operators for external choice, parallel composition by interleaving, and parallel composition by intersection.

These favor their left-hand operands similar to the operators investigated by Jensen [44]. The developed

semantic theory in [31] is based on failure semantics which is made sensitive for local pre-emption. For this

purpose, traces are augmented with a preference function which identi�es the priority relation on the initial

action sets of a given process. A related approach has been presented by Lowe [49]. It di�ers from [31] in

that the underlying algebra is a timed version of CSP [29]. Additionally, Lowe aims at obtaining a fully

deterministic language by making use of a similar notion of priority as the one proposed by Fidge.

Finally, we remark on the notion of strong and weak bisimulations for CCSsl. Since the semantic theory

reects local pre-emption, locations are implicitly occurring in our semantic equivalences. However, in

contrast to the work on location equivalences in [18, 24, 57] we do not consider locations explicitly in our

relations. Our objective is not to observe locations but to capture local pre-emption.

5. Dynamic Priority and Global Pre-emption. This section develops a theory in which priorities

are dynamic and pre-emption is global. The motivation for this theory originated in a desire to devise a

compact model of real-time computation, and we devote signi�cant space to establishing a tight connection

between the seemingly di�erent notions of priority and real-time [9]. For this purpose we equip our language

with a dynamic priority semantics based on global pre-emption and refer to it as CCSdg (CCS with dynamic

priority and global pre-emption). The connection with real-time arises when we interpret delays as priorities:

the longer the delay preceding an action, the lower is its priority. This approach contrasts signi�cantly with

more traditional accounts of real-time, where the only notion of pre-emption arises in the context of the

maximal progress assumption [13, 74] which states that time may only pass if the system under consideration

cannot engage in any further internal computation. The main result of this section is the formalization of

a one-to-one correspondence between the strong-bisimulation equivalences induced by dynamic priority and

real-time semantics.

Unlike the process algebras with priority considered so far, actions in CCSdg do have priority values

that may change as systems evolve. Accordingly, we slightly alter our point of view regarding actions and

priorities by separating action names from their priority values; that is, an action's priority is no longer

implicit in its port name. In this vein, we take the set of actions A to be f�; �; : : :g. We also allow priority

values to come from the full set N of natural numbers rather than a �nite set. Our syntax of processes will

then require that each action is equipped with a priority value taken from N.

The structure of this section is as follows. Section 5.1 briey presents a real-time semantics of our lan-

guage, whereas the dynamic priority semantics is introduced in Section 5.2. The one-to-one correspondence

is established in Section 5.3. Finally, Section 5.4 contains our concluding remarks and discusses related work.

31

5.1. Real-time Semantics. We �rst introduce a real-time semantics for our language, referred to as

CCSrt semantics, which explicitly represents timing behavior. The semantics of a process is de�ned by a

labeled transition system which contains explicit clock transitions { each representing a delay of one time

unit { as well as action transitions. With respect to clock transitions, the operational semantics is set up

such that processes willing to communicate with some process running in parallel are able to wait until the

communication partner is ready. However, as soon as it is available, the communication has to take place,

i.e., further idling is prohibited. This assumption is usually referred to as maximal progress assumption [74]

or synchrony hypothesis [13].

Formally, the labeled transition system corresponding to a process P is a four-tuple hP ;A [f1g; 7�!; P i

where P is the set of states, A [f1g the alphabet satisfying 1 =2 A, 7�! is the transition relation, and P

represents the start state. The transition relation
1
7�! � P �P for clock transitions is de�ned in Table 5.1.

Regarding action transitions, it coincides with the one for traditional CCS where the Rule (Act) is replaced

by the axiom � :0:P
�
7�! P . For the sake of simplicity, we use as representative of A [f1g, and write

P

7�! P 0 instead of hP; ; P 0i 2 7�!. If 2 A we speak of an action transition, otherwise of a clock

transition. Sometimes it is convenient to write P

7�! for 9P 0 2 P : P

7�! P 0. In order to ensure maximal

progress our operational semantics is set up in a way such that P 6
1
7�! whenever P

�
7�!, i.e., clock transitions

are pre-empted as long as P can engage in internal computation.

Table 5.1

Operational semantics for CCSrt

tNil
��

0
1
7�! 0

tRec
P [�x:P=x]

1
7�! P 0

�x:P
1
7�! P 0

tAct1
��

� :k:P
1
7�! � : (k � 1):P

k > 0 tAct2
��

a :0:P
1
7�! a :0:P

tSum
P

1
7�! P 0 Q

1
7�! Q0

P +Q
1
7�! P 0 +Q0

tCom
P

1
7�! P 0 Q

1
7�! Q0

P jQ
1
7�! P 0jQ0

P jQ 6
�
7�!

tRel
P

1
7�! P 0

P [f]
1
7�! P 0[f]

tRes
P

1
7�! P 0

P n L
1
7�! P 0 n L

Intuitively, the process � :k:P , where k > 0, may engage in a clock transition and then behave like

� : (k � 1):P . The process � :0:P performs an � transition to become process P . Moreover, if � 6� � , it may

also idle by executing a clock transition to itself. Time has to proceed equally on both sides of summation,

i.e., P +Q can engage in a clock transition and, thus, delay the nondeterministic choice if and only if both

P and Q can engage in a clock transition, i.e., time is a deterministic concept. Similar to summation, P

and Q have to synchronize on clock transitions according to Rule (tCom). Its side condition implements

maximal progress by ensuring that there is no pending communication between P and Q. Although this

condition is negative, our semantics is still well-de�ned [1, 72]. A semantic theory based on the notion of

bisimulation [52] has been developed for CCSrt [55]. For the purposes of this section we restrict ourselves to

strong temporal bisimulation, a congruence which is de�ned as follows.

32

Definition 5.1 (Temporal Bisimulation). A symmetric relation R � P�P is a temporal bisimulation if

for every hP;Qi 2 R and 2 A[f1g the following holds: P

7�! P 0 implies 9Q0: Q

7�! Q0 and hP 0; Q0i 2 R.

We write P �rt Q if hP;Qi 2 R for some temporal bisimulation R.

The reader might observe that CCSrt semantics unfolds every delay value into a sequence of elementary time

units. For example, the process a :k:0 has k + 2 states, namely 0 and a : l:0 where 0 � l � k (see also

Figure 5.1 in Section 5.3). Representing a :k:0 by a single transition labeled by a :k leading to the state

0 would de�nitely be more e�cient. This idea of compacting the state space of real-time systems can be

implemented by viewing k as a priority value assigned to action a. In other words, one may consider the

delay value k as the time-stamp of action a [43].

5.2. Dynamic Priority Semantics. In order to make the above intuition precise, we formally intro-

duce CCSdg, i.e., a dynamic priority semantics for our language. The notion of pre-emption incorporated in

CCSdg is similar to CCSsg; it naturally mimics the maximal progress assumption employed in CCSrt semantics.

Formally, the CCSdg semantics of a process P is given by a labeled transition system hP ;A� N ;�!; P i. The

presentation of the operational rules for the transition relation �! requires two auxiliary de�nitions.

Table 5.2

Potential initial action sets for CCSdg

Ik(� : l:P) = f� : l j l = kg Ik(P jQ) = Ik(P) [Ik(Q) [f� :k j Ik(P) \ Ik(Q) 6= ;g

Ik(P +Q) = Ik(P) [Ik(Q) Ik(P [f]) = ff(�) : l j� : l 2 Ik(P)g

Ik(�x:P) = Ik(P [�x:P=x]) Ik(P n L) = f� : l 2 Ik(P) j� =2 (L [L)g

First, we introduce potential initial action sets as de�ned in Table 5.2, taking account of the actions

and their priority values in which a given process can potentially engage. Note that these sets are only

supersets of the initial actions of processes since they do not take pre-emption into account. However, this

is su�cient for our purposes concerning pre-emption since � =2 I<k(P) if and only if 6 9l < k: P
� :l
�!, where

I<k(P) =df

S
fIl(P) j l < kg (cf. Section 3.6).

Table 5.3

Priority adjustment function

[0]k =df 0; [x]k =df x [�x:P]k =df [P [�x:P=x]]k

[� : l:P]k =df � : (l � k):P if l > k [� : l:P]k =df � :0:P if l � k

[P +Q]k =df [P]k + [Q]k [P jQ]k =df [P]k j [Q]k

[P [f]]k =df [P]k[f] [P n L]k =df [P]k n L

As second auxiliary de�nition for presenting the transition relation, we introduce a priority adjustment

function as shown in Table 5.3. Intuitively, our semantics is set up in a way such that if one parallel

component of a process engages in a transition with priority k, then the priority values of all initial actions

at every other parallel component have to be decreased by k, i.e., those actions become equally \more

urgent." Thus, the semantics of parallel composition deploys a kind of fairness assumption, and priorities

33

have a dynamic character. More precisely, the priority adjustment function applied to a process P and a

natural number k, denoted as [P]k, returns a process term which is \identical" to P except that the priority

values of the initial, top-level actions are decreased by k. Note that a priority value cannot become less

than 0, and the phrase \identical" does not mean syntactic equality but syntactic equality up to unfolding

of recursion.

Table 5.4

Operational semantics for CCSdg

Act1
��

a :k:P
a:l
�! P

l � k Act2
��

� :k:P
� :k
�! P

Sum1
P

�:k
�! P 0

P +Q
�:k
�! P 0

� =2 I<k(Q) Sum2
Q

�:k
�! Q0

P +Q
�:k
�! Q0

� =2 I<k(P)

Com1
P

�:k
�! P 0

P jQ
�:k
�! P 0j[Q]k

� =2 I<k(P jQ) Rel
P

�:k
�! P 0

P [f]
f(�):k
�! P 0[f]

Com2
Q

�:k
�! Q0

P jQ
�:k
�! [P]kjQ0

� =2 I<k(P jQ) Res
P

�:k
�! P 0

P n L
�:k
�! P 0 n L

� =2 L [L

Com3
P

a:k
�! P 0 Q

a:k
�! Q0

P jQ
� :k
�! P 0jQ0

� =2 I<k(P jQ) Rec
P [�x:P=x]

�:k
�! P 0

�x:P
�:k
�! P 0

The operational rules in Table 5.4 capture the following intuition. The process a :k:P may engage in

action a with priority value l � k yielding process P . The side condition l � k reects that k does not specify

an exact priority but the maximum priority of the initial transition of a :k:P . It may also be interpreted

as lower-bound \timing constraint." Due to the notion of pre-emption incorporated in CCSdg, � :k:P may

not perform the initial � -transition with a priority value less than k. The process P + Q may behave like

P (Q) if Q (P) does not pre-empt the considered transition by being able to engage in a higher prioritized

internal transition. Thus, the notion of global pre-emption reects implicit upper-bound \timing constraints."

The process P jQ denotes the parallel composition of P and Q according to an interleaving semantics

with synchronized communication on complementary actions of P and Q having the same priority value k

which results in the internal action � attached with priority value k (cf. Rule (Com3)). The interleaving

Rules (Com1) and (Com2) incorporate the dynamic behavior of priority values as explained in the previous

paragraph. Their side conditions implement global pre-emption. The semantics for restriction, relabeling, and

recursion is straightforward. As for CCSrt, we may adapt a notion of strong bisimulation, called prioritized

bisimulation.

Definition 5.2 (Prioritized Bisimulation). A symmetric relation R � P � P is called prioritized

bisimulation if for hP;Qi 2 R, � 2 A, and k 2 N the following holds: P
�:k
�! P 0 implies 9Q0: Q

�:k
�! Q0 and

hP 0; Q0i 2 R. We write P �dg Q if there exists a prioritized bisimulation R such that hP;Qi 2 R.

34

5.3. Relating Dynamic Priority and Real-time Semantics. In this section we show that CCSdg

and CCSrt semantics are closely related. The underlying intuition is best illustrated by a simple example

dealing with the pre�xing operator. Figure 5.1 depicts the dynamic priority and real-time semantics of

the process a :k:0. Both transition systems intuitively reect that the process a :k:0 must at least delay k

time units before it may engage in an a-transition. According to CCSrt semantics this process consecutively

engages in k clock transitions passing the states a : (k � i):0, for 0 � i � k, before it may either continue

idling in state a :0:0 or perform an a-transition to the inaction process 0. Thus, time is explicitly part of

states and made visible by clock transitions, each representing a step consuming one time unit. In contrast,

the dynamic priority semantics encodes the delay of at least k time units in the transitions rather than in

the states. Hence, it possesses only the two states a :k:0 and 0 connected via transitions labeled by a : l for

l � k. Although at �rst sight it seems that the price for saving intermediate states is to be forced to deal

with in�nite-branching, an upper bound of l can be given. In our example this upper bound is k itself, since

a delay by more than k time units only results in idling and does not enable new or disable existing system

behavior. Therefore, the dynamic priority transition system of a :k:0 just consists of the two states a :k:0

and 0 and a symbolic transition labeled by a :k, whereas the real-time transition system has k+2 states and

k+2 transitions. The following proposition formally states that CCSdg semantics can indeed be understood

as an e�cient encoding of CCSrt semantics.

...

a:k.0

0

a:(k+1)a:k a:(k+i)

1

1

1

a:0.0

0

a
1

1

a:(k-1).0

a:k.0

dynamic-priority semantics real-time semantics

Fig. 5.1. Relating CCSdg and CCSrt semantics

Proposition 5.3. Let P; P 0 2 P, � 2 A, and k 2 N. Then

P
�:k
�! P 0 if and only if 9P 00 2 P : P

1
7�!kP 00 �

7�! P 0 .

Proposition 5.3 is the key to prove the main result of this section.

Theorem 5.4. Let P;Q 2 P. Then P �dg Q if and only if P �rt Q.

Consequently, prioritized and temporal bisimulation possess the same properties; especially, prioritized bisim-

ulation is a congruence for CCSdg. Again, proof details can be found in [50].

5.4. Concluding Remarks and RelatedWork. As shown above, real-time semantics can be encoded

by dynamic priority semantics. Moreover, the state spaces of CCSdg models are much smaller and the size of

the transition relation is at least not worse, but in practice often better, than the one of corresponding CCSrt

models. This has been demonstrated by formally modeling and verifying several aspects of the widely-used

SCSI-2 bus-protocol [16], for which the state space of the dynamic priority model is almost an order of

magnitude smaller than the one resulting from traditional real-time semantics.

35

Regarding related work, a similar approach has been made by Je�rey [43] who has established a formal

relationship between a quantitative real-time process algebra and a process algebra with static priority which

is very similar to CCSsg presented in Section 3. Je�rey also translates real-time to priority based on the

idea of time-stamping. In contrast to CCSrt semantics, however, a process modeled in Je�rey's framework

may either immediately engage in an action transition or idle forever. This semantics does not obey a

characteristic of the behavior of reactive systems, namely that a process should wait until a communication

partner becomes available, instead of engaging in a \livelock." It is only because of this assumption that

Je�rey does not need to choose a dynamic priority framework.

In [21] a variant of CCSR [22] has been introduced which allows for modeling not only static priority

but also dynamic priority. The main focus of CCSR involves the speci�cation and veri�cation of real-time

concurrent systems, including scheduling behavior. Thus, a notion of dynamic priority, such as occurs in

priority-inheritance and earliest-deadline-�rst scheduling algorithms, is crucial. In [21] dynamic priorities

are given as a function of the history of the system under consideration, and the operational semantics of

CCSR is re-de�ned to include the historical context. The authors show that dynamic priorities do, in general,

not lead to a compositional semantics and give a su�cient condition that ensures compositionality.

6. Priority in Other Process-algebraic Frameworks. This section completes the discussion of

related work by focusing on approaches to priority which (i) do either not �t in our classi�cation scheme

presented in Section 1, such as approaches for ACP [4], SCCS [68], and stochastic [11, 39] or probabilistic [71,

45, 69] process algebras, or (ii) are concerned with process-algebraic descriptions of non-process-algebraic

languages, such as Esterel [12, 13] and Statecharts [36, 70].

Baeten, Bergstra, and Klop were the �rst researchers who investigated priorities in process algebras [4]

by developing a notion of priority for the Algebra of Communicating Processes (ACP) [8] { a process algebra

which is equipped with an axiomatic semantics. Their work is inspired by the insight that it is essential

to incorporate an interrupt mechanism in process-algebraic frameworks in order to enhance their expressive

power as speci�cation and veri�cation formalisms for concurrent systems. Therefore, a piece of syntax

together with semantics de�ning equations is introduced in [4]. Based on a given partial order < on actions a

unary operator � is de�ned. Intuitively, �(P) is the context of P in which action a has precedence over action b

whenever b < a, i.e., non-deterministic choices between actions a and b are resolved within �(P). Technically,

the axiomatic semantics of the new language, notated as a term rewrite system, is shown to possess nice

algebraic properties such as conuence and termination. The utility of the theory is demonstrated by simple

examples dealing with interrupts, timeouts, and other aspects of real-time behavior. The approach in [4]

di�ers from most other work presented in [10] in that the partial order expressing priorities is �xed with

respect to the system under consideration, i.e., the same priority relation holds at all states of the system.

For example, if a < b at some state of the system, then a > b cannot be valid at another state, i.e., priorities

in [4] are not globally dynamic in the sense of [68]. It should also be mentioned that the version of ACP

used in [4] does not include a designated internal action, cf. action � in CCS; a fact which simpli�es the

development of algebraic theories.

Stochastic process algebras [11, 39], which enhance the expressiveness of classical process algebras by

integrating performance descriptions of concurrent systems, also de�ne notions of priority. One example

of a well-known stochastic process algebra is the Extended Markovian Process Algebra (EMPA) [11] whose

semantics is given in terms of strong bisimulation, and its static priority approach is adapted from CCSsg.

36

Smolka and Ste�en [68] have introduced static priority to the Synchronous Calculus of Communicating

Systems (SCCS) [52] by extending a probabilistic version of this language, known as PCCS [71], whose

semantics is given in terms of probabilistic bisimulation. Their work shows that the concept of priority is not

only related to real-time, as investigated in Section 5, but also to probability. The main idea in [68] is to

allow probability guards of value 0 to be associated with alternatives of a probabilistic summation expression.

Such alternatives can be chosen only if the non-zero alternatives are precluded by contextual constraints.

Thus, priority may be viewed as an extreme case of probability. Most remarkably, the semantics developed

in [68] does not employ a notion of pre-emption as one would expect from any priority setting. A conjecture

{ which if true would justify this situation { is that the very powerful hiding operator of SCCS may destroy

the congruence property of bisimulation in the presence of pre-emption.

Tofts has investigated another extension of SCCS, theWeighted Synchronous Calculus of Communicating

Systems (WSCCS) [69]. Its semantics relies upon a notion of relative frequency which is suitable for specifying

and reasoning about aspects of priority, probability, and time in concurrent systems. In this approach priority

is encoded by means of higher ordinals; a transition has priority over another if their weights are separated

at least by a factor of !. An operator similar to the �-operator in [4] is de�ned which extracts the highest

priority transitions enabled at a process state by referring to a global notion of pre-emption. In contrast

to [4], Toft's operator allows for di�erent priority structures at di�erent states. This concept of priority

yields a simpler operational semantics than the one in [68]. For WSCCS, a congruence adapted from strong

bisimulation together with an equational characterization, which is sound and complete for �nite processes,

has been developed.

The concept of pre-emption has also been studied in other synchronous languages, most notably by

Berry [12]. His technical framework is based on Esterel's zero-delay process calculus, a theoretical version

of the Esterel synchronous programming language [13]. The calculus' semantics interprets processes as

deterministic mappings from input sequences to output sequences which obey maximal progress [74]. Berry

emphasizes the importance of pre-emption in control-dominated reactive and real-time programming. He

suggests pre-emption operators to be considered as �rst-class operators which are fully orthogonal with

respect to all other primitives such as concurrency and communication. This is in contrast to the approach

chosen for this article in which pre-emption is implicitly encoded as side conditions of operational rules

involving nondeterminism. Several examples of useful pre-emption operators are presented and axiomatized

in [12], all of which are based on the ideas of abortion and suspension.

The speci�cation language Statecharts [36], for which process-algebraic descriptions of Statecharts' se-

mantics have been developed [70], extends communicating �nite automata by concepts of hierarchy and

priority. In Statecharts static priorities can be expressed via the absence of actions, also called events, by

permitting negated actions as guards, which are referred to as triggers. As an example, consider the follow-

ing term describing a simple statechart: a : b: P + :b : c:Q. This term consists of a nondeterministic choice

between a b-transition with guard a to process P , and a c-transition with guard :b to Q. Intuitively, the

statechart may only engage in the latter transition if it cannot execute the former since this one produces

the event b which falsi�es the guard of the c-transition. Thus, the b-transition is given precedence over the

c-transition. In the following we argue that approaches to priority via negated events (cf. [34]) do not go well

along with the concept of hiding which is used in many process algebras and also in a very popular variant of

Statecharts, called ARGOS [51]. Hiding enables one to relabel a visible action into a distinguished invisible

action (cf. the internal action � in CCS). The problem with hiding arises when several events are hidden, i.e.,

37

all of them are relabeled to the same event and, thus, have the same implicit priority value attached to them.

Hence, hiding may destroy priority structures. However, in most other priority approaches considered in this

paper priorities are assigned to transitions, thereby allowing for a more �ne-granular priority mechanism and

avoiding the above-mentioned problem.

7. Conclusions and Directions for Future Work. This article has investigated various aspects of

priority in process algebras. The utility of introducing priority to traditional process algebras is to enhance

their expressiveness and, thereby, making them more attractive to system designers.

7.1. Conclusions. We have illustrated the most important aspects of priority by de�ning a proto-

typic language which extends Milner's Calculus of Communicating Systems (CCS). This language has been

equipped with several semantics according to whether priorities are static or dynamic and whether the

adapted notion of pre-emption is global or local.

In practice it is easy to determine when to use a static priority and when to use a dynamic priority

semantics: for modeling interrupts and prioritized choice constructs a static notion of priority is adequate,

whereas for modeling real-time or scheduling behavior dynamic priorities should be considered. However,

static priority approaches may also allow for the description of a few, very simple scheduling algorithms,

as has been shown in [44] in the presence of a prioritized parallel composition operator. In addition to the

dynamic priority approach's ability to express more general scheduling algorithms, it also leads to a more

e�cient veri�cation of real-time systems since the sizes of system models with respect to dynamic priority

semantics are often several orders of magnitude smaller than the ones regarding real-time semantics [16]. If

one needs to deal with both interrupt and real-time aspects at the same time, static and dynamic priority

approaches must be combined. In this situation each action should be assigned two priority values, the �rst

interpreted as a global priority value for scheduling purposes and the second interpreted as a local priority

value for modeling interrupts, where the �rst priority value has more weight than the second one.

Suitable guidelines supporting the decision in favor of a global or a local notion of pre-emption are the

following. A semantics obeying global pre-emption is required when modeling interrupts and prioritized-

choice constructs in concurrent, centralized systems or when specifying real-time and scheduling aspects.

Global pre-emption also allows for making executions of action sequences atomic. This can be necessary

for modeling systems accurately and, as a desired side e�ect, keeps system models small, thereby enhancing

the e�ciency of veri�cation procedures [28]. However, when dealing with interrupts or prioritized-choice

constructs within distributed systems the concept of global pre-emption is inadequate. Here, the use of local

pre-emption does not only lead to an intuitive but also to an implementable semantics since it does not

require any knowledge about computations which are internal to other, potentially unknown sites (cf. [26]).

Technically, the three di�erent calculi presented in Sections 3{5 have been equipped with a bisimulation-

based semantics. The re-development of the semantic theory of CCS for the static priority calculi included:

(i) characterizations of the largest congruences contained in the naive adaptations of the standard strong

and weak bisimulations, (ii) encodings of the new behavioral relations as standard strong bisimulations on

enriched transition relations, and (iii) axiomatic characterizations of the prioritized strong bisimulations for

�nite processes. For the dynamic priority calculus strong bisimulation has been served as a semantic tool for

establishing a one-to-one correspondence between dynamic priority and real-time semantics. Finally, observe

that our semantic theories show that extensions of process algebras by priority do not need to sacri�ce the

simplicity and the elegance that have made traditional process-algebraic approaches successful.

38

This article has also surveyed related approaches to priority which are concerned with di�erent process-

algebraic calculi. We have classi�ed them according to whether priorities are considered to be static or

dynamic and whether their concept of pre-emption is global or local. The concept of priority has also been

investigated in other concurrent frameworks, most notably in Petri Nets [14, 67]. In this setting priorities

are either expressed explicitly by priority relations over transitions [15] or implicitly via inhibitor arcs [42].

Finally, it should be mentioned that priorities can implicitly arise when studying causality formobile processes

(see e.g. [30]). In these approaches, priorities cut o� superuous paths that only present new temporal but

not causal dependencies of systems.

7.2. Future Work. In addition to the fact that a calculus combining dynamic priority and local pre-

emption has not been developed, yet, also the semantic theories for CCSsg and CCSsl need to be completed

by axiomatizing their observational congruences. For �nite processes, one should be able to establish these

axiomatizations using standard techniques [53]. However, for regular processes, i.e., the class of �nite-state

processes not containing recursion through static operators, it is not clear how to obtain completeness. The

point is that existing methods for proving completeness of axiomatizations with respect to observational

congruences rely on the possibility to remove or to insert � -cycles in processes [53]. In the context of pre-

emption, however, this would possibly change the pre-emption potential of processes and is, thus, semantically

incompatible with the prioritized observational congruences presented here. Recently, a similar problem has

been attacked in [38] for a stochastic timed process calculus with maximal progress. The de�nition of

observational equivalence employed in that paper di�ers from Milner's original one by adding a notion of

fairness which is sensitive to escaping divergence, i.e., in�nite internal computation. However, the authors

conjecture that their technique can be adapted to priority frameworks, too.

Most process algebras which have been equipped with a notion of priority rely on an interleaving se-

mantics, handshake communication, and a semantic theory based on bisimulation. It should be investigated

in which sense the presented approaches and results, especially regarding local pre-emption, can be adapted

to broadcasting calculi such as Hoare's CSP [40]. Moreover, since for semantics based on local pre-emption

the usual interleaving law is not valid, it is worth pursuing local pre-emption for non-interleaving semantic

frameworks [3, 73]. Preliminary considerations have been made in Jensen's thesis [44]. However, the insights

obtained by Jensen are restricted to a structural operational semantics for a CCS-based calculus which is

de�ned using asynchronous transition systems [73]. Jensen's results do not comprise a behavioral relation

such as bisimulation (cf. [57]). Finally, we want to note that { to the best of our knowledge { extensions of

higher-order process algebras [54, 62] with concepts of priority do not yet exist. Thus, it would be interesting

to see if some of the presented approaches can be carried over straightforwardly or if any semantic di�culties

regarding pre-emption arise.

8. Sources and Acknowledgments. Major parts of this article have been adapted from several

publications by the authors which include two Ph.D. theses: the results of Section 3 are taken from [25, 50,

58, 59] and the ones of Section 4 from [27, 50]; Section 5 heavily borrows from material contained in [16, 50].

The authors would like to thank Girish Bhat, Matthew Hennessy, Michael Mendler, and Bernhard Ste�en

for many discussions about priority in process algebras.

39

REFERENCES

[1] L. Aceto, W. Fokkink, and C. Verhoef, Structural operational semantics, in Bergstra et al. [10].

To appear.

[2] J. Baeten, ed., Applications of Process Algebra, Vol. 17 of Cambridge Tracts in Theoretical Computer

Science, Cambridge University Press, Cambridge, England, 1990.

[3] J. Baeten and T. Basten, Non-interleaving ACP and its application to Petri nets, in Bergstra et al.

[10]. To appear.

[4] J. Baeten, J. Bergstra, and J. Klop, Syntax and de�ning equations for an interrupt mechanism

in process algebra, Fundamenta Informaticae IX, (1986), pp. 127{168.

[5] J. Baeten and J. Klop, eds., CONCUR '90 (Concurrency Theory), Vol. 458 of Lecture Notes in

Computer Science, Amsterdam, August 1990, Springer-Verlag.

[6] J. Baeten and W. Weijland, Process Algebra, Vol. 18 of Cambridge Tracts in Theoretical Computer

Science, Cambridge University Press, Cambridge, England, 1990.

[7] G. Barrett, The semantics of priority and fairness in occam, in Proceedings of Mathematical Foun-

dations of Programming Semantics, M. Main, A. Melton, M. Mislove, and D. Schmidt, eds., Vol. 442

of Lecture Notes in Computer Science, Springer-Verlag, 1989, pp. 194{208.

[8] J. Bergstra and J. Klop, Algebra of communicating processes with abstraction, Theoretical Com-

puter Science, 37 (1985), pp. 77{121.

[9] J. Bergstra, C. Middelburg, and Y. Usenko, Discrete time process algebra and the semantics of

SDL, in Bergstra et al. [10]. To appear.

[10] J. Bergstra, A. Ponse, and S. Smolka, eds., Handbook of Process Algebra, Elsevier, 1999. To

appear.

[11] M. Bernardo and R. Gorrieri, Extended markovian process algebra, in CONCUR '96 (Concurrency

Theory), U. Montanari and V. Sassone, eds., Vol. 1119 of Lecture Notes in Computer Science, Pisa,

Italy, August 1996, Springer-Verlag, pp. 315{330.

[12] G. Berry, Preemption in concurrent systems, in Foundations of Software Technology and Theoretical

Computer Science, Vol. 761 of Lecture Notes in Computer Science, Springer-Verlag, 1993, pp. 72{93.

[13] G. Berry and G. Gonthier, The ESTEREL synchronous programming language, design, semantics,

implementation, Science of Computer Programming, 19 (1992), pp. 87{152.

[14] E. Best, R. Devillers, and M. Koutny, A consistent model for nets and process algebras, in

Bergstra et al. [10]. To appear.

[15] E. Best and M. Koutny, Petri net semantics of priority systems, Theoretical Computer Science, 96

(1992), pp. 175{215.

[16] G. Bhat, R. Cleaveland, and G. L�uttgen, A practical approach to implementing real-time seman-

tics, Annals of Software Engineering, 7 (1999). Special issue on Real-time Software Engineering.

[17] T. Bolognesi and E. Brinksma, Introduction to the ISO speci�cation language LOTOS, Computer

Networks and ISDN Systems, 14 (1987), pp. 25{59.

[18] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn, Observing localities, Theoretical Com-

puter Science, 114 (1993), pp. 31{61.

[19] J. Bradfield and C. Stirling, Modal process logics, in Bergstra et al. [10]. To appear.

[20] P. Br�emond-Gr�egoire, J.-Y. Choi, and I. Lee, A complete axiomatization of �nite-state ACSR

processes, Information and Computation, 138 (1997), pp. 124{159.

40

[21] P. Br�emond-Gr�egoire, S. Davidson, and I. Lee, CCSR92: Calculus for communicating shared

resources with dynamic priorities, in Purushothaman and Zwarico [66], pp. 65{85.

[22] P. Br�emonde-Gr�egoire, I. Lee, and R. Gerber, A process algebra of communicating shared re-

sources with dense time and priorities, Theoretical Computer Science, 189 (1997), pp. 179{219.

[23] J. Camilleri and G. Winskel, CCS with priority choice, Information and Computation, 116 (1995),

pp. 26{37.

[24] I. Castellani, Locations and distributed processes, in Bergstra et al. [10]. To appear.

[25] R. Cleaveland and M. Hennessy, Priorities in process algebras, Information and Computation, 87

(1990), pp. 58{77.

[26] R. Cleaveland, G. L�uttgen, and M. Mendler, An algebraic theory of multiple clocks, in CONCUR

'97 (Concurrency Theory), A. Mazurkiewicz and J. Winkowski, eds., Vol. 1243 of Lecture Notes in

Computer Science, Warsaw, Poland, July 1997, Springer-Verlag, pp. 166{180.

[27] R. Cleaveland, G. L�uttgen, and V. Natarajan, A process algebra with distributed priorities,

Theoretical Computer Science, 195 (1998), pp. 227{258.

[28] R. Cleaveland, V. Natarajan, S. Sims, and G. L�uttgen, Modeling and verifying distributed

systems using priorities: A case study, Software{Concepts and Tools, 17 (1996), pp. 50{62.

[29] J. Davies and S. Schneider, A brief history of Timed CSP, Theoretical Computer Science, 138

(1995), pp. 243{271.

[30] P. Degano and C. Priami, Causality of mobile processes, in International Conference on Automata,

Languages and Programming (ICALP '95), Z. F�ul�op and F. G�ecseg, eds., Vol. 944 of Lecture Notes

in Computer Science, Szeged, Hungary, July 1995, Springer-Verlag, pp. 660{671.

[31] C. Fidge, A formal de�nition of priority in CSP, ACM Transactions on Programming Languages and

Systems, 15 (1993), pp. 681{705.

[32] R. Gerber and I. Lee, CCSR: A calculus for communicating shared resources, in Baeten and Klop

[5], pp. 263{277.

[33] , A resourced-based prioritized bisimulation for real-time systems, Information and Computation,

113 (1994), pp. 102{142.

[34] S. German, Programming in a general model of synchronization, in CONCUR '92 (Concurrency The-

ory), R. Cleaveland, ed., Vol. 630 of Lecture Notes in Computer Science, Stony Brook, New York,

August 1992, Springer-Verlag, pp. 534{549.

[35] H. Hansson and F. Orava, A process calculus with incomparable priorities, in Purushothaman and

Zwarico [66], pp. 43{64.

[36] D. Harel, Statecharts: A visual formalism for complex systems, Science of Computer Programming, 8

(1987), pp. 231{274.

[37] M. Hennessy, Algebraic Theory of Processes, MIT Press, Boston, 1988.

[38] H. Hermanns and M. Lohrey, Priority and maximal progress are completely axiomatisable, in CON-

CUR '98 (Concurrency Theory), D. Sangiorgi and R. de Simone, eds., Vol. 1466 of Lecture Notes in

Computer Science, Nice, France, September 1998, Springer-Verlag.

[39] H. Hermanns, M. Rettelbach, and T. Wei�, Formal characterisation of immediate actions in

spa with nondeterministic branching, The Computer Journal, 38 (1995), pp. 530{541.

[40] C. Hoare, Communicating Sequential Processes, Prentice-Hall, London, 1985.

[41] INMOS Limited, Occam Programming Manual, International Series in Computer Science, Prentice

Hall, 1984.

41

[42] R. Janicki and M. Koutny, Semantics of inhibitor nets, Information and Computation, 123 (1995),

pp. 1{17.

[43] A. Jeffrey, Translating timed process algebra into prioritized process algebra, in Proceedings of Sympo-

sium on Real-Time and Fault-Tolerant Systems (FTRTFT '92), J. Vytopil, ed., Vol. 571 of Lecture

Notes in Computer Science, Nijmegen, The Netherlands, January 1992, Springer-Verlag, pp. 493{

506.

[44] C.-T. Jensen, Prioritized and Independent Actions in Distributed Computer Systems, Ph.D. thesis,

Aarhus University, Denmark, August 1994.

[45] B. Jonsson, K. Larsen, and W. Yi, Probabilistic extensions of process algebra, in Bergstra et al.

[10]. To appear.

[46] P. Kanellakis and S. Smolka, CCS expressions, �nite state processes, and three problems of equiv-

alence, Information and Computation, 86 (1990), pp. 43{68.

[47] Kempe Software Capital Enterprises, Ada95 reference manual: Language and standard libraries,

1995. Available at http://www.adahome.com.

[48] L. Lamport, What it means for a concurrent program to satisfy a speci�cation: Why no one has

speci�ed priority, in Twelfth Annual ACM Symposium on Principles of Programming Languages

(POPL '85), Orlando, Florida, January 1985, IEEE Computer Society Press, pp. 78{83.

[49] G. Lowe, Probabilistic and prioritized models of timed CSP, Theoretical Computer Science, 138 (1995),

pp. 315{352.

[50] G. L�uttgen, Pre-emptive Modeling of Concurrent and Distributed Systems, Ph.D. thesis, University

of Passau, Germany, May 1998. Published by Shaker Verlag, Aachen, Germany.

[51] F. Maraninchi, The ARGOS language: Graphical representation of automata and description of re-

active systems, in IEEE Workshop on Visual Languages, October 1991.

[52] R. Milner, Communication and Concurrency, Prentice-Hall, London, 1989.

[53] , A complete axiomatization for observational congruence of �nite-state behaviours, Information

and Computation, 81 (1989), pp. 227{247.

[54] R. Milner, J. Parrow, and D. Walker, A calculus of mobile processes, part I and II, Information

and Computation, 100 (1992), pp. 1{77.

[55] F. Moller and C. Tofts, A temporal calculus of communicating systems, in Baeten and Klop [5],

pp. 401{415.

[56] U. Montanari and D. Yankelevich, Location equivalence in a parametric setting, Theoretical Com-

puter Science, 149 (1995), pp. 299{332.

[57] M. Mukund and M. Nielsen, CCS, locations and asynchronous transition systems, in Foundations

of Software Technology and Theoretical Computer Science (FSTTCS '92), R. Shyamasundar, ed.,

Vol. 652 of Lecture Notes in Computer Science, Springer-Verlag, 1992, pp. 328{341.

[58] V. Natarajan, Degrees of Delay: Semantic Theories for Priority, E�ciency, Fairness, and Predictabil-

ity in Process Algebras, Ph.D. thesis, North Carolina State University, August 1996.

[59] V. Natarajan, L. Christoff, I. Christoff, and R. Cleaveland, Priorities and abstraction in

process algebra, in Foundations of Software Technology and Theoretical Computer Science (FSTTCS

'94), P. Thiagarajan, ed., Vol. 880 of Lecture Notes in Computer Science, Madras, India, December

1994, Springer-Verlag, pp. 217{230.

[60] R. Paige and R. Tarjan, Three partition re�nement algorithms, SIAM Journal of Computing, 16

(1987), pp. 973{989.

42

[61] D. Park, Concurrency and automata on in�nite sequences, in Proceedings of 5th G.I. Conference on

Theoretical Computer Science, P. Deussen, ed., Vol. 104 of Lecture Notes in Computer Science,

Springer-Verlag, 1981, pp. 167{183.

[62] J. Parrow, Mobility in process algebras, in Bergstra et al. [10]. To appear.

[63] G. Plotkin, A structural approach to operational semantics, Tech. Report DAIMI-FN-19, Computer

Science Department, Aarhus University, Denmark, 1981.

[64] K. Prasad, Programming with broadcasts, in CONCUR '93 (Concurrency Theory), E. Best, ed.,

Vol. 715 of Lecture Notes in Computer Science, Hildesheim, Germany, August 1993, Springer-Verlag,

pp. 173{187.

[65] , Broadcasting with priority, in Proceedings of the 5th European Symposium on Programming,

Vol. 788 of Lecture Notes in Computer Science, Edinburgh, U.K., April 1994, Springer-Verlag,

pp. 469{484.

[66] P. Purushothaman and A. Zwarico, eds., First North American Process Algebra Workshop, Work-

shops in Computing, Stony Brook, New York, August 1992, Springer-Verlag.

[67] W. Reisig, Petri Nets: An Introduction, Springer-Verlag, 1985.

[68] S. Smolka and B. Steffen, Priority as extremal probability, Formal Aspects of Computing, 8 (1996),

pp. 585{606.

[69] C. Tofts, Processes with probablities, priority and time, Formal Aspects of Computing, 6 (1994),

pp. 536{564.

[70] A. Uselton and S. Smolka, A compositional semantics for statecharts using labeled transition sys-

tems, in CONCUR '94 (Concurrency Theory), B. Jonsson and J. Parrow, eds., Vol. 836 of Lecture

Notes in Computer Science, Uppsala, Sweden, August 1994, Springer-Verlag, pp. 2{17.

[71] R. van Glabbeek, S. Smolka, and B. Steffen, Reactive, generative, and strati�ed models of

probabilistic processes, Information and Computation, 121 (1995), pp. 59{80.

[72] C. Verhoef, A congruence theorem for structured operational semantics with predicates and negative

premises, Nordic Journal of Computing, 2 (1995), pp. 274{302.

[73] G. Winskel and M. Nielsen, Models for concurrency, in Handbook of Logic Computer Science,

S. Abramsky, D. Gabbay, and T. Maibaum, eds., Vol. 4, Oxford Science Publications, 1995, pp. 1{

148.

[74] W. Yi, CCS + time = an interleaving model for real time systems, in International Conference on

Automata, Languages and Programming (ICALP '91), J. L. Albert, B. Monien, and M. R. Artalejo,

eds., Vol. 510 of Lecture Notes in Computer Science, Madrid, July 1991, Springer-Verlag, pp. 217{

228.

43

